Coordinating multiset
transformers

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus prof. dr J.J M. Franse
ten overstaan van een door het college van dekanen ingestelde
commissie in het openbaar te verdedigen in de Aula der Universiteit
op maandag, 27 oktober 1997, te 13:00 uur door
Hugh Edmund McEvoy
geboren te Leeds, Engeland

Promotores: prof. dr. L. O. Hertzberger
prof. dr. C. Hankin

Commissie: prof. dr. H. Kuchen
prof. dr. H. Sips
dr. W. Vree

Faculteit der Wiskunde, Informatica, Natuurkunde en Sterenkunde
Kruislaan 403,

1098 SJ Amsterdam

The Netherlands

(© Hugh McEvoy 1997

ISBN: 90-74795-76-5

The front cover shows a Goblin program to generate Dolly, the world’s first
autocatalytic sheep. The back cover shows the result of executing the pro-
gram on the singleton multiset containing Dolly.

Contents

1 Introduction: coordination is everywhere

1.0.1 Coordination using control-flow
1.0.2 Coordination through interoperability
1.0.3 Coordination using multiset transformation
1.1 Introductionto T’ L 0.
1.1.1 The syntax and semanticsof I'
1.1.2 Examples of I' programs
1.2 The friends of MST o 0.
1.2.1 Parallel and distributed computing
1.2.2 Specification formalisms
1.2.3 Process algebracand calculi
1.2.4 Chemical abstract machines
1.2.5 Language paradigms
1.2.6 Formal languages
1.2.7 Physical modelling
1.3 Open problems in MST
1.3.1 Efficiency
1.3.2 Compositionality
1.3.3 Flexibility
1.34 D’sproblems,
1.4 The motivation for this thesis
1.4.1 The structure of this thesis

A unified semantic framework for parallel transformation
2.1 Imtroduction. L
2.2 Introducing PT
2.2.1 Thesyntaxof PT
2.2.2 Anatomies of a selection function and interest tuple
2.2.3 The formal semanticsof PT
2.3 A posse of parallel languages
231 T .o
2.3.2 T*: T with loops and single-shot functions
2.3.3 Calculus of Gamma Programs (CGP)
2.3.4 A context-sensitive Gamma (CSI')
2.3.5 A context-insensitive Gamma (CII")
2.3.6 Statesets oL

ii

CONTENTS

2.3.7 Non-linearity 50
2.3.8 AlChemy: chemical reactions modelled using A-terms 50
2.3.9 Abortion and deadlock oL 50
2.4 Context sensitivity and interleaving choice 51
2.5 Synchronous and non-synchronous reductions 54
2.5.1 Some results linking I';, T'*, CGP and CGP* 55
2.6 A taxonomy of I'-like languages 57
2.7 Fairness 57
2.8 Futurework 58
2.9 Conclusions 59
State synchronisation and data contexts 61
3.1 Imtroduction. L. 61
3.2 Datacontextsin PT 62
3.3 Synchronous state update in PT 64
3.4 Encoding parallel operators 68
3.4.1 A non-prescriptive parallel operator 68
3.4.2 A prescriptive parallel operator 68
3.5 Combining state synchronisation and data contexts 70
3.6 Encoding I' in PT with Sg; and Sga. 77
3.7 Addendum: the MSTL Goblin 78
3.8 Futurework 82
3.9 Conclusions 83
Modelling stochastic phenomena using MST 85
4.1 Models of stochastic phenomena 85
4.1.1 The structure of this chapter 86
4.2 Stochastic versus non-deterministic computation 87
4.3 Stochastic MST program reduction 88
4.3.1 Random number generators 88
4.3.2 Functions chosen with probabilities determined statically 89
4.3.3 Functions chosen with probabilities determined dy-
namicallyo L 89
4.3.4 Subset selection with probabilities determined statically 90
4.3.5 Dynamic variation of probabilities for subset selection 91
4.3.6 Termination with a statically-determined probability . 92
4.3.7 Termination with a dynamically-determined probability 92
4.4 Example stochastic applications 93
4.4.1 Monte Carlo integral approximation 93
4.4.2 Diffusion-limited aggregation 94
4.4.3 A genetic algorithm: an example using normalisation . 95
4.4.4 Simulated annealing 96
45 Futurework Lo 99
4.6 Conclusions Lo 99

CONTENTS iii
5 Modelling environmentally-sensitive growth using MST 101

5.1 Imtroduction. L L. 101
5.2 Modelling Growth of Ramifying Objects 103
5.2.1 Collisions with a fixed object 105

5.2.2 Growth towards the light 107

5.2.3 Non-self intersection 109

5.2.4 Combining non-self intersection with photo-sensitivity 111

5.2.5 A Cellular Automaton 111

5.3 Conclusions 112

6 Conclusions 115
6.1 Summary of the chapters 116
6.2 Futurework 119
6.2.1 Theoretical tasks ahead 119

6.2.2 Practical tasks ahead 0000 120

6.2.3 The multiset: there is no silver billet 121

6.3 Exeunt 121

7 Samenvattingen/summaries 123
7.1 Nederlands o 123
72 English 125

A Proofs 129
Al T'toPToproof o 129
A.1.1 Simple programso e 129

A.1.2 Non-simple programs. 131

A2 CGPtoPToproof 133
A.2.1 Simple programs 0.0 133

A.2.2 Non-simple programs. 135

A3 T'toPToproof., 137
A3.1 Simple programs 137

A.3.2 Non-simple programs. 140

v

CONTENTS

Acknowledgments

This is the bit where I can ramble on for pages about all of the people who
have helped me in any way during my years in Amsterdam.

First and most of all, I would like to thank Pieter Hartel for all that he
has done for me. Not only did he give me a lot of support and help in all
aspects of life when I got here (such as helping me open a bank account:
“The Postbank is a good one, Hugh. It doesn’t cost much to keep your
money there”!!! And this to an Englishman who was used to being paid to
put his money in the bank), but he also gave me a lot of time in the initial
parts of my research. Since he moved to Southampton, our meetings have
been less frequent but no less friendly. Above and beyond the call of duty,
he let me ‘anti-squat’ in his house when the oh-so-marvellous Dutch housing
system demonstrated that it neither works for foreigners (where ‘foreigner’
is defined as somebody who doesn’t come from the district of Amsterdam)
nor is interested in the troubles of those for whom it doesn’t work. So much
for free movement of labour within the EU...

My work was supervised by a posse of people at the University of Ams-
terdam, most of whom had different ideas about what I ought to do. Thus
is intradisciplinary work defined. The original plan was to get two groups
(declarative systems and scientific computing) to collaborate. Whether or
not the collaboration succeeded, we leave to the reader to judge. In any
case, offspring of this marriage haunt the pages of this thesis. For all their
help and patience with my disinclination to listen to anybody, I would like to
thank Bob Hertzberger, Wim Vree and Peter Sloot. As with all coordination
enterprises, some communication protocols were necessary. If I have irritated
any of you with my lack of appreciation for the finer points of diplomacy, I
am sorry.

Chris Hankin has my warmest thanks for being the chap who started me
on this road back in 1993, when he suggested that I do my Master’s project
on an implementation of Gamma. I’'m not sure that he knew what he was
getting himself into. Having been there at the start of the journey, I am
honoured that he is still travelling with me. And T still owe him a beer.
Better make it two.

During November and December of 1996, I travelled to the University
of Calgary, Canada. There, I worked with some truly wonderful people and
learned lots of fascinating things. Some of those things I even learned at
work! My warmest gratitude goes to Przemek Prusinkiewicz for his sup-

1

2 CONTENTS

portive collaboration, his friendship and the music that we played together.
I shall never forget it. In the same breath, my thanks go out to all my
(temporary) colleagues at the U of C: you know who you are! A special
mention must go to Camille Sinanan for putting up with me, Eric Galin,
Brian ‘toothbrush’ Wyvill and Robin Cockett. Maybe you haven’t seen the
last of me. Peter Sloot also deserves a large round of applause: he was the
catalyst for the whole adventure and, being a catalyst, was not consumed
by the reaction which followed. Just as well, really.

Marcel Beemster deserves a doughnut (which is the same as an oliebol)
for all of his help, his friendship and his belaying. I can’t imagine a better
person with whom to share an office (but is it mutual?). For his friendship,
very definite opinions and Magic campaigns, Jon Mountjoy must be thanked,
as must Nikki Mountjoy for the first of these.

Over the last years, I have asked many people many questions about
many subjects. I hope that not too many of them (the questions, that is!)
were stupid, but in any case, thanks go to Chris Verhoef, Andy Pimentel,
Theodossis Papathanassiadis (hope I spelled that right), Toto van Inge, Anne
Troelstra, Krzysztof Apt, Jeroen Voogd, Arjen Schoneveld, Benno Overein-
der, Alfons Hoekstra and a cast of thousands for trying to answer them. If I
have forgotten anyone, it was intentional. In the same breath, thanks go to
Jaap Kaandorp for having a very great influence on my work. It all started
with me asking him about his thesis, which I saw on somebody’s bookshelf.
I found and continue to find his work on modelling sponges, corals and other
fish ;-) fascinating. His desk is a mess, though.

On the social side, I'd like to acknowledge the friendships I’ve made in
this beautiful city: Andrea Brands, Kasper “Dook” van Benten, Martijn van
Puffelen, Marion Kolader and, of course, The Band! You know who you are.
Thanks to you all for the pinball wars and syncopation (even if the latter
was unintentional).

Finally (unless I think of someone else), I'd like to thank D minor for
being the saddest of all keys.

Hugh McEvoy, Amsterdam. July 1997

“I should have liked to produce a good book, This has not come about, but
the time is past in which I could improve it.”

Ludwig Wittgenstein, Preface to ‘Philosophical Investigations’, Black-
well, England, 1958

CONTENTS

For music and for Heidi, the loves of my life.

CONTENTS

Forward

The myriad of computer applications in the mass-market, such as Quake!
and WordPerfect?, makes it easy to get blinded by the ease with which com-
puters can accomplish the most complex tasks. In particular, the widespread
use of parallel and, more commonly, distributed, computing environments
within the business community may perhaps lead one to think that all the
problems of computing are solved. Alas, this is not so. What is often less
obvious to the casual user of software, is that controlling the complexities
of software products’ interaction with themselves and with other systems
in a computer still owes more to necromancy than to science. The ability
to coordinate a number of components and mediate their interactions with
each other are only now beginning to be studied in isolation from particular
engineering solutions.

This thesis concerns itself with an examination of mechanisms for con-
trolling software scheduling and intercommunication. These two areas rally
loosely under the banner coordination. Our particular viewpoint is essen-
tially abstract, with the state of the machine being represented by an un-
structured multiset (bag) of information, which is manipulated by programs.
Such a computation model is termed a multiset transformation language
(MSTL). We can view a sequence of successive (possible) contents of the
multiset as a consequence of the programs’ interactions with that multi-
set. The programs are themselves scheduled by a higher-level mechanism, a
formally-defined language which is able to schedule tasks sequentially, con-
ditionally or in an interleaved fashion. We hereby obtain a powerful tool
for understanding function coordination in a quite general setting®. Regret-
tably, our optic also clouds our vision somewhat, in particular because our
multiset makes irritatingly cumbersome investigation of systems requiring
structured state. However, our undertaking is far from hopeless, as wit-
nessed by our ability to give, in terms of our formal framework, a reasonably
systematic analysis of interleaving operators and a number of not entirely
trivial applications. These are our cause for cheer.

The investigative orientation taken in this thesis is essentially intra-

LA marvellous game from iD software in which players massacre horrible monsters and
occasionally each other.

2WordPerfect is a trademark of the WordPerfect corporation. WordPerfect is much
less violent than Quake.

3But not completely general: our simplest functions are atomic which, in practice, may
only be the case at the processor level.

5

6 CONTENTS

disciplinary (which is not nearly so fashionable as inter-disciplinary research).
Steering the investigations is the firm conviction that, without keeping a
model’s applications firmly before the mind’s eye, developing that model is
unlikely to yield significant benefits. This peril is, in this author’s opinion,
particularly insidious with theoretical work, when assumptions made to ease
formal investigation sometimes render a model inapplicable in practice. We
shall encounter examples of this along our path. At the same time, approach-
ing an abstract view of coordinating systems as one would a programming
project is similarly inadvisable and, if followed by the majority, likely to
result in long-term impoverishment of computer science (if it is, indeed, a
science). My hybrid orientation explains the rather eclectic collection of in-
vestigations here reported. Picking up the ball and running with it as far as
possible might be considered by some the only way to play the game, but a
wider perspective seems to me to be at least as important.

This thesis contains two main tributaries. Firstly, textually speaking,
come the investigations of the formal nature of multiset transformation lan-
guages. Interleaving composition of programs is singled out for particular
consideration involving, as it does, rather complex relationships with logi-
cal parallelism. Some of what I say is distinctly heterodox: shortcomings
of certain well-known models qua interleaving and parallelism, are claimed.
These shortcomings come to light as one tries to write non-trivial programs.
After initially believing interleaving to be a relatively straightforward issue,
I gradually came to the conclusion that interleaving is actually a Pandora’s
box of hornets’ nests (yes, it’s that dangerous).

The second tributary is the applications of MSTLs themselves, which
hail mainly from the scientific modelling community. In these chapters,
my aim is twofold: firstly, to drive multiset transformation development
with applications from the ‘real world’ and, secondly, to show that multiset
transformation models actually offer something of interest to the physical
modelling community.

The fractal border between the theoretical and the practical is hard to
discern, in part because I try to make clear where the applications have
motivated the theory throughout the thesis. The result of this is that I
jump backwards and forwards between the two sub-disciplines. I do not
apologise for this. I believe that the benefits to an understanding of multiset
transformation yielded by the interplay between the theoretical and practical
are more numerous and more important than the benefits yielded by either
of the tributaries in isolation.

Chapter 1

Introduction: coordination
is everywhere

Wherever we look, we find the interaction between agents being controlled
and mediated by other agents. Businesses schedule their projects, assigning
starting dates and resources to each. Employers coordinate their employee’s
actions and interactions. Employers also coordinate with other businesses
in providing products for each other and responding to each others compet-
itive pressures. Committees coordinate with each other to reach agreement
and even coordinate with each other to agree on what constitutes agree-
ment [137]. Swimming fish coordinate their actions so that they always stay
within a certain distance of their shoal-mates [73, 56]. A window manager
coordinates the interaction between the applications and the screen, han-
dling requests for windows to be iconified or enlarged and passing input
and output between the user, the screen and the application programs [68].
Imperative programming languages control the ordering of expression eval-
uations and function calls through the language’s control-flow constructs.
Conditionals form a bridge between data- and control-flow, executing a cer-
tain sequence of actions depending on the values of the data. The list of
coordinating mechanisms goes on and on.

Despite the obvious appeal of being able to say something coherent about
coordination in general, this thesis concerns itself only with those aspects of
coordination related to computer software. With this caveat, we can view
coordination as enabling interaction. Informally, this can occur in two ways.

1. By making decisions about the order in which coordinated programs
should be executed. The control mechanism executes (parts of) the
component programs in the desired order. Control-flow constructs
examined in this thesis include sequential execution, conditional ex-
ecution, non-deterministic choice and interleaved execution. Others
may also be possible. This form of coordination we term control-flow
coordination.

2. By empowering components to communicate with each other. For all
forms of inter-process communication, it is vital that the components

7

8 Multiset transformation...

be able to communicate with each other in principle. This kind of
coordination we term coordination through interoperability. Interoper-
ability can be provided in a number of ways, each of which imposes
certain structure on the communication. Some examples are given
below. Whether interoperability empowers communication of data or
communication as synchronisation [69] is not considered relevant in
this thesis. The important question is: what is required before com-
munication can take place at all?

These two aspects of coordination are adequate to draw a line in the
sand between considering coordination as prescriptive undertaking—using
control-flow to determine the order in which programs can execute—and as
a non-prescriptive undertaking—allowing the data-flow imposed by and on
the component programs to determine the order in which they can execute.

Despite the two rather different uses of ‘coordination’, they are certainly
not unrelated. For example, Linda [59, 58] and the Common Object Re-
quest Broker Architecture (CORBA) [132] only provide interoperability for
software components. These two models impose no explicit control-flow on
the programs. Instead, the order of program executions is determined only
by the ordering of message receiving and sending between processes. Both
languages are added to a conventional base language, whose control-flow con-
structs determine the order in which messages are sent between processes.
A different approach can be seen in I' [17, 16] and CGP [37], in which both
interoperability and control-flow coordination mechanisms are manifested.
In such languages, the order of program execution can be made explicit us-
ing control-flow operators within the coordination language (see Section 1.1
for details of I'’s control-flow operators). In addition to explicit control-flow,
further orderings on program executions can be enforced through programs’
data-flow characteristics, as in Linda and CORBA. Finally, the language
Facility [1] adds control-flow style coordination to CORBA-like languages.
More details of all these coordination languages will be given in due course.
The distinction between control-flow coordination and coordination by inter-
operability is rarely stressed, perhaps because work on one often implicitly
assumes the presence of the other.

In recent years, coordination has arisen as a discipline in its own right [1].
Within the scientific coordination community, models are proposed to handle
one or both aspects of coordination, although the general trend seems to be
study of control-flow coordination. At the same time, an explosion of interest
in interoperability in the business community has led to development of
standards such as CORBA [132] as a way of integrating systems written
at different times, by different people, for different platforms, in different
languages.

The rest of this introduction is structured as follows. We first discuss
the two forms of coordination—control-flow and interoperability—in greater
detail. Next, we introduce MST, together with an example MSTL called
Gamma (I') [20, 65] which was proposed by Banatre and Le Métayer. We
give a few short examples of I' programs to whet the readers’ appetite for
more. We then illustrate the similarities between languages such as I' and

...you are what you eat. 9

other programming models which have arisen at different times in different
disciplines. The prevalence of MST-like ideas in a variety of fields sug-
gests that MST has something to offer. Unfortunately, we have found Le
Métayer’s paradise only to discover that our abiding there is on sufferance:
extant MSTLs suffer from a number of difficulties, which are discussed in
Section 1.3. In Section 1.4, we give a brief overview of the work which has
been undertaken in this thesis. The work consists of theoretic attempts to
overcome or, at least, ameliorate some of the problems of current MSTLs,
coupled with attempts to generalise the model and to understand how classes
of applications can be encoded within the (extended) model.

1.0.1 Coordination using control-flow

Imperative programming languages contain constructs which dictate the con-
trol flow of a program. Examples are many and include sequential compo-
sition, parallel composition, choice, conditionals and gotos. Control-flow
constructs can be thought of as coordination constructs, as they control the
order in which program fragments are applied to the state. Similarly, they
can be thought of as communication constructs, where the information com-
municated only concerns the execution status of a program fragment. An
illustration is given in Figure 1.1. Information can only be communicated
from the left- to the right-hand side of a sequential composition: no commu-
nication in the opposite direction is possible. As we shall see in Chapter 2,
interleaving compositions can also be viewed as communication enablers be-
tween the composed program fragments. In that chapter, we see a good
example of this property: in I" [65], interleaved program fragments can only
execute if their possible reductions are at least as ‘interesting’ as those of-
fered by other programs in the composition. Communication can be viewed
as bidirectional, with composed programs deciding between them which can
execute.

Control-flow constructs are also communication limiters, in the sense
that they impose a priori restrictions on the ways in which processes can
communicate. A good example of this is a variable which is changed by a
program A and then read by a program B. If A is to the right of B in a
sequential composition, such communication cannot take place.

— A

P;Q ifBthenPelseQ

Figure 1.1: Control as communication. We can view control con-
structs in an imperative language as specifying (very limited) com-
munication between program fragments. The arrows indicate the
direction of the communication.

Where, exactly, communication ends and control-flow begins is therefore

10 Multiset transformation...

not entirely clear. However, what s clear is that imposing control flow on
a set of tasks which would otherwise execute in parallel radically changes
the communication possibilities between the processes. If all programs are
executing in an interleaving/parallel composition, coordination occurs only
in the sense in which data-flow determines the order in which programs are
executed.

1.0.2 Coordination through interoperability

Increased performance, together with decreasing hardware costs, has made it
possible for software vendors to write larger and more complex programs. In
part, this is merely undesirable—too many organisations produce buggy code
and too many produce code which is not optimised for space or time usage,
even in those cases when optimisation is desirable!. Both these problems
are exacerbated by increased software complexity. However, the increased
use of computers in workplaces and homes requires that they become more
friendly to the user: offering better interfaces, more help and more function-
ality. Furthermore, computers are becoming so much a part of the fabric
of the modern world that they are being used for things which Alan Turing
probably never seriously considered?. The spreading use of computers from
the laboratory to the home, necessitates vastly larger and more complex
software. With larger software systems comes the need to understand how
such systems can be designed, built and maintained; not as one-off research
projects but as software products that can be modified or augmented to meet
each new challenge.

Much of large systems’ complexity arises from the plethora of parts which
must be built and which must cooperate in solving a problem. Common sense
and thousands of person-years of design experience [78] suggest that we have
to implement large systems in small parts which work together. Furthermore,
we must be able to replace parts of our code with other parts with similar
functionality, add completely new parts to already working systems and use
old parts again in new systems. All this has to be achieved with minimum
difficulty. In open systems [41], the problems are exacerbated by the need
to add new functionality and remove old functionality at runtime.

As an attempt to mitigate the problems of building large, open, dis-
tributed systems, the Object Management Group (OMG) has proposed the
Common Object Request Broker Architecture (CORBA) [132] as a standard
for interoperability between objects written by different vendors in different
languages. CORBA allows the definition of interfaces between objects, with
the interfaces defined in the Interface Definition Language (IDL). Objects
wishing to use CORBA must have their interfaces written in IDL so that
a proprietary compiler can generate executables using the IDL specification
and the programmer’s source (which can be written in any of a number of
languages). The result is an executable which can invoke methods statically
or dynamically in any other CORBA object on the network. Routing of

1Such as for an operating system.
2e.g. Quake.

...you are what you eat. 11

messages is performed by the Object Request Broker (ORB)3. If an object
is re-distributed to another node on the network, the ORB automatically
tracks it and routes messages to it. This role of the ORB eases application
development considerably: the application programmer merely has to decide
which message must be sent to which object. The ORB then locates that
object, which can be anywhere on the network, and ensures that the message
is delivered.

Clearly, the form of coordination enabled by CORBA is that of interop-
erability: no control constructs schedule the objects. Instead, the ordering
on the objects’ own method invocation schedules the ordering of execution.
This ordering is not imposed (or even available) to the ORB being, as it is,
a part of the programmer’s code outside the IDL code.

1.0.3 Coordination using multiset transformation

This thesis discusses coordination from the perspective of computations over
an unstructured state (a multiset). A multiset is the least constrained pos-
sible communication medium. The agents are programs or processes, while
communication is mediated by data which are placed in the multiset. The
available control constructs are constrained as little as possible and the ap-
plication areas are left as open as possible. This, very general, model is
known as multiset transformation (MST) and its associated languages as
multiset transformation languages (MSTLs). Similarly, a program written
in an MSTL we christen a multiset transformer. We shall see many examples
of such programs in the pages which follow. This thesis therefore interests
itself in coordination of multiset transformers; hence its title.

The concept of programming by multiset transformation has been at-
tributed to Jean-Pierre Banatre and Daniel Le Métayer [16, 19, 18]. Their
idea is compellingly simple and consists of two parts:

1. The state is a multiset. A multiset differs from a set in that the former
allows multiple instances of the same value to exist as distinct entities,
unlike with a set. A multiset is completely unstructured, so our state
is effectively a virtual shared state. Data placed in the multiset by
one agent can be removed by other agents (or even by the same agent
at a later time). Those familiar with Linda [58] will recognise a tuple
space being used for generative communication. We shall see numerous
examples of the flexibility a multiset offers in the chapters ahead. The
multiset’s lack of structure also renders access to the multiset non-
deterministically: if several elements in the set satisfy a predicate, then
the choice of which one will be removed is made non-deterministic. The
interaction between programs and state is specified formally.

2. Computation takes place according to a ‘chemical-reaction’ metaphor.
The idea is that multiset elements are thought of as ‘molecules’ of data.
An analogue of Brownian motion brings molecules together. When the

3As usual in industrially-sponsored activities, TLAs (Three-Letter Abbreviations)
abound.

12 Multiset transformation...

molecules collide, they ‘react’ with each other if they satisfy certain
conditions, which are specified in the program. If a reaction takes
place, then the ‘reagents’ are replaced by their products. Eventually
(assuming that the program terminates), all of the reactions which can
take place have done so, and the multiset is then unable to change i.e.
is ‘stable’ with respect to the given program. The final multiset is the
outcome of the computation.

For the sake of this thesis, we define a multiset transformation language
as a language possessing either one of these properties. For each language
we describe, we explain which of two these properties it possesses.

What is the added value of this programming model? In their original
papers [17, 16, 19], Banatre and Le Métayer claimed that their motivation
was to provide a high-level parallel programming language that could be used
to provide a demonstrably correct initial version of a program. This version
would exhibit a minimum of extra-logical sequentiality. In other words, the
program so expressed would be as parallel as possible, given the logic of the
algorithm. Using this initial, highly-parallel, program as a starting point,
an executable program could be developed. This executable could be either
derived from the original program by a process of refinement or compiled
directly from the initial program.

More recently, there have been proposals to use I' as a coordination lan-
guage [1] for heterogeneous software components. The intention is to able to
apply control-flow coordination to a number of software components, whose
data would be communicated via a tuple space (the multiset). In this way,
both the control-flow and interoperability styles of coordination would be
ensured. One of the most interesting properties of multisets as communi-
cation media, noticed in the early Linda work [59], is that messages placed
in the the multiset can be retrieved by processes started after termination
of the message’s sender. This form of communication with the unborn was
christened generative communication [58], indicating the offered possibility
of communicating with future generations. Furthermore, an unstructured
multiset can be seen as an abstraction from a communication medium: an
abstraction which constrains as little as possible the choice of medium used
in a real system.

1.1 Introduction to I

Of all multiset transformation languages, the one with which this thesis is
most concerned is " [65, 20]. We choose I' because it is one of the best-known
multiset transformation languages and has a simple and well-defined formal
semantics. Our starting with I' colours a lot of what is said in this thesis, so
we here present a formal and informal introduction to I' to give the reader
an appreciation of the language.

...you are what you eat. 13

p € P def (B,A) (primitive function)
(P) (brackets)
P, + P, (interleaving composition)
P, o P, (sequential composition)
where :

P = program

B = boolean conditions

A = action functions

M = multiset

Figure 1.2: The abstract syntax of Gamma. The types of all functions are
omitted here: they can be seen in Chapter 2. The réle of the multiset will
become apparent in due course.

1.1.1 The syntax and semantics of [’

In the I model, an initial multiset is repeatedly transformed as functions are
applied to the elements of the multiset. The results of function applications
are placed in the multiset and are then re-used as function arguments until
no more applications are possible. This occurs either when the set contains
too few elements to provide enough arguments to any function, or when
no permutation of the elements satisfies the boolean condition of any func-
tion. A number of I programs have appeared in the literature, for example
sorting programs [65], graph problems [16], string processing programs [19]
and edge-detection programs [40]. The abstract syntax of I' is shown in
Figure 1.2 and its structural operational semantics (SOS [114]) in 1.3. The
SOS of I is described in terms of a one-step transition relation on (program,
multiset) pairs (configurations). A one-step transition from configuration to
configuration we term a reduction. A reduction path is a sequence of reduc-
tions, normally terminating with a configuration whose program component
is empty (i.e. an empty program, multiset pair).

The basic unit of interaction between the multiset and the program is
the primitive function. A primitive function is applied to a vector consisting
of zero or more elements 17 of the multiset. In a slight abuse of notation, we
write 35 C o for ‘there exists a subset of elements of the multiset o which
can be ordered as a vector &’. If the boolean condition (the B in (B, A)) is
satisfied (Rule App;), then the elements 7 are replaced by Am. We say that
the multiset has been rewritten. Notice that primitive functions are recur-
sive: if a primitive function is successfully applied to the multiset, then that
function ‘regenerates’ itself and is again available. If the boolean condition
on the elements is not satisfied (Rule Appz), then the primitive function is
reduced to the empty program and the multiset is left unchanged. We con-
struct programs from programs using two program composition operators
(primitive functions are also programs). For each, we describe its behaviour
in intuitive terms. The first is written ‘o’ and is a right-associative sequential

14 Multiset transformation...

Im C M.Bm App -3m C M.Bm App
((B,A),M) =1 ((B, A),M[Ary/imi]) YoABA My M
<P1)M> =T <P1I)Ml>
Int

(Pl +P2,M> =T <P1I+P2,M,>&<P2+P1,M> =T <P2+P1,,Ml>

(Pi,My=r M (P2,M)=r M
(Pl +P2,M> :>I‘M

IntT

(P M) e (PLMY) (P, M) = M
e
(Pyo P, M) = (Pyo Pl M) -1 (Pyo P, M) =1 (P, M)

Seq-

Figure 1.3: The SOS of Gamma, described in terms of a 1-step transition
relation on configurations. The transition relation = is the least satisfying
the above clauses. Rule Int has multiple conclusions, indicating that either
conclusion can be deduced if the antecedent is true.

composition of two functions. £1 o £2 applies £2 until it terminates (Rule
Seq;). After £2 terminates, £2 is discarded and f1 is applied (Rule Seqa).
Sequential composition therefore behaves in a similar way to functional com-
position in an eager functional language [49] (hence the choice of notation).
The second connective is written ‘4+’ and indicates the interleaved composi-
tion of two functions* For example, f1+ f2 will apply whichever of f1 or f2
are applicable to the multiset, if either of them can be applied (Rule Int). If
both of them can be applied, one is chosen non-deterministically. If neither
can be applied, the composition terminates (Rule Intr).

1.1.2 Examples of [' programs

So, what can we do with all this? In this section, we attempt to whet the
readers’ appetite for MST programs with a number of ‘classic’ I' programs.
All of these have appeared in the literature (see, for example, [16] for a
selection of programs).

An addition program

Imagine that we wish to write an MST program which adds up a set of
numbers. In a conventional language (e.g. C [82]), we may start by con-
sidering in which sort of data structure we wish to represent our data. A
linked list? An array? Then we would consider what sort of mechanism we
wish to use to traverse the data structure that we have created. But, given
a programmer’s natural lazy instincts [141], together with our knowledge of
the associativity of ‘plus’, what we would really like to say to the computer,

4In the literature, ‘4’ is often described as a parallel operator, a terminology with
which we disagree for reasons which will become apparent in Chapter 3.

...you are what you eat. 15

if we could, would be ‘just add up the numbers, in any way you like.” With
this thought in mind, consider the following I' program:

(B, 4) {...}

where B(z,y) = True
Alz,y) = {z+y}

Reading this program from top to bottom, we realise that we have but
a single primitive function (B, A), which is applied to the multiset. The
primitive function is defined such that it takes two formal parameters x and
y and then returns a singleton set containing their sum. In the process it
consumes both arguments (functions always consume their actual parameters
in T'). With an initial multiset {1,2,4}, this program can reduce in three
ways, which are shown in Figure 1.4. Each possible reduction path leads to
the same final multiset. Each of these three reduction paths can readily be
generated by using the SOS rules of Figure 1.3. The formal derivation of
one possible reduction path is shown below:

((BvA)7{1’274}> =T ((BvA)7{374}>
((BaA)){374}> =T ((BaA)>{7}>

((B,4),{7}) =v {7}

al
@CQ“Q
\Q“Q

Figure 1.4: The three possible reduction paths of the addup program, applied
to a multiset {1,2,4}.

A sorting program

The following I' program sorts a list of elements, represented in the multiset
as a set of (index, value) pairs.

16 Multiset transformation...

(B,4) (..}
where B((i1,v1),(i2,v2)) = il1>i2Avl <02
A((i1,v1), (12,v2)) {(:1,v2), (i2,v1)}

The program searches the multiset for pairs of elements whose values
are out of order with respect to the indices. The values of all such pairs are
swapped. Once all of these pairs of elements have been swapped, the multiset
represents a sorted list. An example reduction path for this program, can
be seen in Figure 1.5.

(3.8)

(3,9 ---48) 4.9

2,5 ----(@1,9

2,5) (1,13)

-
-

(5,9

3,8 4,9)

s

(3,9

4,9

-

2,9 1,5)

(2.8)

1,5)

(5,13)

(5,13)

Figure 1.5: A possible reduction path for the sort program, applied to a
multiset {(4,8),(2,5),(3,9),(1,13),(5,9)}. The example follows [16].

The sieve of Eratosthenes

A primes sieve on a multiset {2...n} can be written in I' as follows:

(B,A) {...}
where B(z,y) = z%y=0

Alz,y) = A{y}

Where 2%y is the remainder of an integer division of = by y. The program
proceeds by eliminating all of the numbers in the multiset which are multiples
of other numbers in the multiset. Eventually, the only numbers left in the

...you are what you eat. 17

multiset are those which cannot be divided by any others i.e. are prime. An
example reduction path for this program is shown in Figure 1.6.

. @
Figure 1.6: A possible reduction path for the sieve program, ap-
plied to a multiset {2...8}. The example follows [16].

Much of the work done on I' has attempted to generate semantics for
the language and thereby to prove properties of the language. Of particular
interest are [67, 48, 66]. Implementation work on I' is described in [70,
139, 62, 39]. Some non-trivial applications of I' (a UNIX kernel and image
processing), are described in [34, 40]. An interesting Higher-Order variant
of I' is to be found in [100]. Many more relevant papers can also be found
in [1].

1.2 The friends of MST

One of the strengths of MST is that it appears, more or less independently,
in many different areas of computer science. While this does not per se mean
that it is a significant development, it certainly causes one to believe that
it addresses issues which are widely relevant. The fields in which MST has
its strongest impact are illustrated in Figure. 1.7. Each of the relationships
shown in the diagram, is discussed in more detail in the following subsections.
Coordination languages have already been discussed, so the material is not
repeated here. By calling the readers’ attention to these apparently disparate
evolutions of MST, we hope to convince her®. that MST is, indeed, a subject
worthy of study in its own right. Additionally, we explore in greater detail
in later chapters relationships between some of these areas, so a compass
might aid the reader in following the trail we have laid out here.

1.2.1 Parallel and distributed computing

Below, we discuss the relationship between MSTLs and parallel program-
ming. Most MSTLs (e.g. T' [39, 62, 61]) are claimed to be amenable to
parallel implementation; the intuition being that an unstructured state can
easily be partitioned over a number of nodes. We shall see in due course

5Throughout this work, we refer to third parties as ‘her’, for formally motivated reasons:
{s,h,e} U{h,e} = {s,h,e}. ‘Her’ follows from ‘she’. (Notice that this argument works in
English, which is why this thesis is written in English.)

18 Multiset transformation...

Parallel and
Language distributed Process
paradigms computing algebrae and
calculi
Specification Multiset Chemical
formalisms [) abstract
Transformation machines
Physical Coordination
modelling Formal languages
languages

Figure 1.7: MST’s closest colleagues. A strong relationship between MST
and another area is indicated by a line. The connections between each of
these areas and MST are explained in this chapter.

that, at least for certain languages, this claim of almost free parallelism is
a mistake. The difficulty arises because of the sequential dependencies on
function applications required by the multiset elements and the functions’
conditions. We therefore appear to lay to rest the dependencies beneath a
shroud of parallel operators. However, once the program is executed, these
dependencies leave their grave and rise again.

Linda

Linda [59, 58] is undoubtedly the most famous MSTL. Proposed by Ger-
lernter and Carriero, Linda is a set of primitives designed to be added to
conventional programming languages to enable coordination through inter-
operability of heterogeneous software components. No control-flow coordi-
nation is specified (all processes run in parallel), while intercommunication
between the components is enabled through provision of a shared tuple space
(a multiset). Tuples can be inserted into the space using the in() primitive,
removed from the set using the out () primitive or read (that is, a tuple is
observed but not removed from the tuple space) using the read () primitive.
Removal or reading of a tuple is performed via pattern-matching on tuple

...you are what you eat. 19

elements. Linda also includes an eval () function which performs some ac-
tion which eventually places a tuple in the tuple space. For example, eval ()
may spawn new processes which eventually deposit their results in the tuple
space. Tuples placed into the tuple space remain until removed.

Communication in Linda has the curious property that neither sender
nor receiver have to know where the other program is in time or in space. In
particular, it is possible to leave a message in the tuple space for a program
which has not started to execute. When another program starts to execute, it
can retrieve, from the tuple space, the message which was left for it earlier.
This very simple but very basic model of communication was christened
generative communication by its creators.

Linda has been implemented on a number of architectures and is used
in a number of projects. It is even available commercially. More details of
Linda, its programming style and applications can be found in [33, 31, 32].

Bonita

Rowstron and Wood’s Bonita [121] is an alternative set of primitives to
Linda’s, into which it is possible to translate Linda’s primitives. In Linda
operations, the in() and read () operations are synchronous: they wait until
an eligible tuple is returned. Experience with implementation and applica-
tions of Linda systems convinced Rowstron and Wood that inefficiencies in
distributed Linda implementations stem not from the time required to access
the tuple space but from the time taken to send messages over a network.
Bonita’s primitives are asynchronous, allowing further computation during
the time that a process must wait for a requested tuple to be returned from
the tuple space.

1.2.2 Specification formalisms

Most MSTLs possess a simple operational or denotational semantics. Pos-
session of such a semantics enables formal reasoning about the language and
about programs written in the language. The availability of formal reasoning
makes it possible, for example, to prove the correctness of a particular pro-
gram relative to that program’s specification. A well-defined mathematical
semantics for a formalism also makes it possible that a program be subject
to successive refinement in a correctness-preserving way [5, 107, 106, 6, 11,
12, 7, 13]. Tt is encouraging that many MSTLs have actually been used as
specification languages in their own right. Examples include UNITY [35],
DisCo [87] and Action Systems [8, 9]. All of these formalisms are described
below. These three specification languages perform computations based on
the chemical-reaction metaphor: functions continue to be applied to the state
until application of none of the functions can change the state any more.

UNITY

UNITY [35] is a specification formalism intended to be used to write correct
parallel programs. Programs consist of two parts. One is an initialisation

20 Multiset transformation...

statement for each variable which appears in the program. The other part
of the program is a set of conditional assignment statements, which can be
executed in any order (or in parallel). The only constraint is that imposed by
a fairness constraint: every statement is executed infinitely often. At each
computation step, some statement is chosen and executed. The program
never terminates, although there may come a point when no assignment
causes alterations in the state. The state has therefore reached a fixed point
with respect to the program, and can therefore be treated as the result of
the computation.

A point to note is that the stability condition for UNITY programs is
different from that of I' programs. In I', a multiset M is said to be stable
with respect to a program P iff P cannot be applied to M. In UNITY,
however, a multiset M is defined as stable with respect to a program P iff
applying P to M does not change M. An example of this can be seen if we
imagine the function

ifx =1thenz:=1

When applied to a state {z := 1}. In UNITY, the program is immediately
stable whereas, in I', a textually similar program will never be stable with
respect to the state. In Chapter 2, we discuss in greater detail stability of
programs with respect to a state.

Action Systems

Action Systems [5, 9, 10, 11, 131, 87, 30] is a specification framework for par-
allel reactive systems. An Action System consists of a number of processes,
executing in parallel. As in UNITY, statements are guarded commands.
Furthermore, also in common with UNITY, the only restriction on the order
of process executions is that imposed by a fairness assumption. In Action
Systems, abortion is favoured over all other possible reductions. That is, if
one of the operands of an interleaving composition will abort if executed,
then abortion must occur.

DisCo

Another language from the same stable as UNITY and Action Systems is
DisCo (Distributed Cooperation) [77, 76, 85, 87, 86]. The reactive nature of
its application domain motivates use of Lamport’s Temporal Logic of Actions
(TLA) [88] as a logic for formulating and for proving program properties.
DisCo has been used for a number of small- to medium-sized applications [76,
85] and for specification of object-oriented (OO) reactive systems [77]. In all
these applications, the strength of the model is shown through its amenity
to stepwise refinement of specifications into executables.

Transaction-Based Programming and Schedules

The language TBP (Transaction-Based Programming) was introduced in [45]
as a specification language for parallel programs. Similar in orientation to

...you are what you eat. 21

I', the work on TBP was carried out independently from that of I, until the
work of Chaudron [36] (described below). To TBP was added the language
of Schedules, which allows the programmer (or a tool) to specify orderings on
TBP component executions. The TBP program describes what is to be done,
while the schedule describes how it is to be done. An executable program
therefore consists of two parts: the original TBP program and the schedule.
Using stepwise refinement [107], a lower-level schedule can be derived from
a higher-level schedule, until the schedule is tuned for optimal execution on
the desired architecture.

Chaudron [36] has used Schedules as a coordination language for I'. He
has produced a number of impressive results showing how well Schedules
can be applied a number of I' programs, including programs for matrix
transformation. Chaudron’s work differs from much of that done on I in that
he uses I' as a programming language, rather than a coordination language.

Of particular relevance to the current work are:

1. Schedules features one-shot functions with explicit recursion. This is
the approach taken in Chapter 2 of this thesis, which differs from that
taken for I' and for CGP. The latter two formalisms feature implicitly
recursive functions and no one-shot functions.

2. Schedules’ parallel operator is a true, non-prescriptive, parallel oper-
ator. Again, this differs from the approach taken in I' and CGP, in
which the ‘parallel’ operators are interleaving operators. We give ex-
ample prescriptive and non-prescriptive parallel operators for multiset
transformation languages in Chapter 3.

By separating the high-level program description from the low-level de-
scriptions, Schedules encourages the derivation of multiple versions of a pro-
gram, each tuned for a specific architecture. Throughout, the original pro-
gram is preserved, making it easy to see which refinement steps have been
made for the architecture in question.

1.2.3 Process algebrae and calculi

Two areas of vital importance to the development of the semantics of pro-
gram operators are those of process algebra and process calculi [101, 69, 15].
Process algebra, as its name suggests, adopts an algebraic approach to pro-
gram (process) composition operators, leaving operational considerations to
be derived from the axiomatic description. Each process composition oper-
ator is defined by a set ¥ of function symbols together with their arities and
a set ' of equations over terms over o. Process algebra has always been of
fundamental importance to formal approaches to parallelism, although nei-
ther field is impotent without the other. In process calculus, we start with
an operational semantics, which is then used to derive program equivalences.
Despite these differences, the two approaches are sufficiently closely related
to warrant a joint presentation. Historically, the similarities have also been
great, with CCS (a process calculus) motivating the development of ACP (a
process algebra).

22 Multiset transformation...

Arguably the first approach to concurrency theory which interested it-
self in algebraic issues was Milner’s Calculus of Communicating Systems
(CCS) [101, 102]. Offering an operational semantics to his operators, Milner
showed how to prove the existence of certain algebraic laws. Once this was
achieved, the discussion could shift from a purely operational perspective to
a focus on the algebraic issues thereby raised. Since then, Milner has de-
veloped the m-calculus (first introduced in [103, 104]), a more general form
of CCS. At about the same time as CCS was introduced, Hoare introduced
his Communicating Sequential Processes (CSP) [69], which was based upon
a trace semantics. Later, the name TCSP (‘Theoretical CSP’) was intro-
duced to describe a version based upon failure semantics [29]. Confusingly,
it is now common to refer to TCSP as CSP. Process algebra was introduced
by Bergstra and Klop, in the form of the Algebra of Communicating Pro-
cesses (ACP) [26, 23]. Instead of beginning with an operational approach
from which algebraic laws were derived, ACP began with a collection of laws
which ‘should’ be satisfied by any operational semantics. Of the four for-
malisms here mentioned, Theoretical CSP is the most abstract, while CCS,
the m-calculus and ACP are more operationally oriented [14]. That is, CSP
identifies more processes than the other two and is more of a specification
language than the other two. We briefly introduce each of these formalisms
below. More details about process algebrae can be found in [101, 69, 15].
The sections on CCS and CSP follow [15], while the section on ACP fol-
lows [23]. We give merely the briefest appetiser of each formalism, to whet
the readers appetite.

Each of the process algebrae/calculi described here offers a collection
of process composition operators, together with either a set of equations
describing the processes identified under the algebra, or an operational se-
mantics from which such equations can be derived. Many variants exist of
each of these formalisms, each with its own added constructs.

ACP

ACP possesses a set A of so-called atomic actions, including a constant
0 for deadlock. The process composition operators include nondeterminis-
tic choice, sequential composition and interleaving composition. Nondeter-
ministic choice + chooses between its operands (note: + has a completely
different meaning in I', where it indicates the interleaved execution of its
operands [65]). Sequential composition of processes z an y is written z.y,
or just zy. Interleaving composition ||| interleaves execution of its operands.
It is defined in terms of ||, which is the same as ||| except that x|y takes
its first action from z. ||| in ACP therefore corresponds (intuitively) to + in
['. ACP possesses a communication function | such that if a | b = ¢, then ¢
is the action that results from simultaneously executing a and b. Processes
share actions rather than data [23, page 2]. = | y is like z ||| y except that
the first action has to be a communication between the first step of z and
the first step of y.

Once an algebraic description of a set of operators is given, an opera-
tional semantics for the operators can be derived [14]. This is not always a

...you are what you eat. 23

straightforward task, as the discussion of ‘weight’ in [24] demonstrates.

CCS

For every atomic action in CCS, we have precisely one other atomic action
with which it communicates. Thus, we have both a set A of names and a

set of conames A d:ef {@:a € A}. When a and @ communicate, the result

is a silent step 7. Therefore, the set A of actions is defined as A d:ef AUA

and the set A, of actions including 7 is simply defined as A, d:ef Au{r}.

The nondeterministic choice of CCS is the same as the + of ACP. CCS has
no general notion of sequential composition. Instead, only prefiz composition
is possible.: if a € A, and z is a process, then az is a process. CCS’s
| operator is similar to the ||| operator of ACP, but with more restricted
communication possibilities. In CCS, if z = ¢(z) is an equation, then p X .t(z)
is a process satisfying this equation. In our semantics work in Chapters 2
and 3, we make use of the u-notation to describe recursive programs.

The m-calculus

The m-calculus [103] is a CCS-like formalism in which communication of
names occurs through named channels. A communication over a channel
can only occur if the receiver names the same channel as an input as is
named by the sender as an output channel. Four constructions are added to
this basic notion.

Firstly, sequential composition is prefix composition, as we have already
seen for CCS. Secondly, P | Q is an interleaving composition of P and @, in
which communication may take place. Thirdly, !P is a replicant of P: P can
be copied as many times as necessary. Finally, (va)P restricts the scope of
name z in P to P. That is, occurrences of name = outside P are regarded
as different from those inside P.

CSP

In CSP, a process a can only communicate with itself, an action which leaves
a unchanged.

CCS possesses two kinds of choice operator: external choice [| and internal
choice M. The former can be influenced by the environment (hence its name).
The latter cannot be influenced by the environment and occurs whenever the
choice is determined by hidden actions. z My can be represented in ACP
and CCS by 7z + 7y, while || cannot be directly represented.

Furthermore, like CCS, CSP has prefix composition. CSP has two oper-
ators for parallel (interleaving) composition. ||| is interleaving without com-
munication (like || in ACP) and || is communication without interleaving.
Like CCS, CSP offers recursion in the form of p-operators. The interpreta-
tion, however, is different from that in CCS.

24 Multiset transformation...

The link between MSTLs and process algebrae/calculi

With their goals the exploration of alternative language constructs and their
interactions, process algebrae and calculi are close in spirit MSTLs such as
T. Consider, for example, the following, which was stated in [65, page 344].

For the sake of modularity, it is desirable that a language offers
a rich set of operators for combining programs. It is also funda-
mental that these operators enjoy a useful collection of algebraic
laws in order to make it possible to reason about composed pro-
grams.

This similarity of purpose manifests itself in the willingness to add new
operators to an existing language to study their effects on that language.
(compare [14] and [65]). We shall see echos of ideas from process calculi
(particularly with regards to deadlock and non-deterministic choice) in later
chapters.

Although possessing of a rich shared heritage, MSTL and process alge-
bra also orient themselves somewhat differently. The major difference in the
orientation taken in the MSTL world from that taken in the process alge-
bra world is that, in the latter, the algebraic laws define an operator, from
which laws an operational semantics may be derived. For the former (MST),
the semantics is taken as defining the language and the algebraic laws are
derived. Although this difference might appear slight, it has some ramifi-
cations. For example, it has been shown that it is not possible to define
a finite axiomatisation for the free-merge (interleaving) operator, without
making use of an auxiliary operator [105]. For this reason, [22] introduced a
so-called left-merge operator, in terms of which the free merge can be given
a finite axiomatisation. The fragment of the process algebra term-rewriting
system corresponding to interleaving therefore contains two sets of rules:
one for the free merge (which are defined in terms of the left-merge) and
one for the left-merge itself. Thus is the algebraic difficulty of a finite ax-
iomatisation manifested operationally by the presence of several operators.
In comparison, operational semantics of interleaving operators in MSTs re-
quire no auxiliary operators [66]. Another example of the effects of regarding
the algebraic laws as fundamental can be seen when we consider that adding
an operator to a process algebra potentially involves adding equations to
describe the interaction between programs containing the new operator and
each of the old operators. In general, standard operational semantics of sim-
ilar operators (sequential composition, interleaving, deadlock etc) require no
such additions to be made when they are added to a language.

Another similarity between process algebrae/calculi and MSTLs is high-
lighted in the following section, where we describe a single model, an exten-
sion of I', in which semantics for process calculi can be given (among other
things).

...you are what you eat. 25
1.2.4 Chemical abstract machines

The Chemical Abstract Machine (ChAM) [25, 27] was introduced as a gen-
eralisation of I'. In the ChAM, molecules are treated as terms of algebrae
and may be heated to break complex molecules apart or cooled to allow com-
plex molecules to form from simpler molecules. Furthermore, the ChAM
introduces the notion of a membrane which isolates some part of the chem-
ical solution. Within the membrane, reactions continue independently of
the rest of the solution. A limited form of membrane permeability is intro-
duced: molecules are able to pass through the membrane by passing through
an airlock.

ChAMs can be seen as a unifying concept shared by MSTLs such as T’
and by process calculi and algebrae [15]. On the one hand, the ChAM is
avowedly an extension of the I' model and clearly shares many of the same
properties. On the other hand, the ChAM has been used to give semantics
for a number of process calculi, including CCS and the w-calculus [27].

The ChAM makes a much more literal interpretation of the chemical
reaction metaphor than that taken in I'. Interestingly, we shall see another
very literal interpretation of the metaphor within a rather different context
in Section 1.2.7. There, we shall see chemical reactions seen not as a means
of giving a semantics to concurrency, but as a way of investigating the origins

of life.

1.2.5 Language paradigms

Conventional (imperative) languages are based upon the Von Neumann com-
putation model, in which a list of instructions is given to the computer,
which executes each in turn. Over the last few decades, interest has grown
in computation based upon models other than Von Neumann’s. The most
important of these new models are declarative languages, by which we mean
both functional [49] and logic languages [71]. Declarative languages offer a
model in which the machine is not explicitly given a list of tasks to perform
in a particular order. Instead, the emphasis is on removal of the operational
aspects of program execution (slogan: “How the solution is to be reached.”)
and, instead, towards providing a (mathematical) description of the problem
to be solved, the logical structure of which allows the generation of solutions
(slogan: “Describing the problem.”).

In a logic language [71, 75], a program consists of a set of terms from
a restricted first order propositional logic theory with equality (i.e. Horn
clauses [71]). Computation proceeds by generating inferences from the set
of terms until either the goal or its negation are generated. It may be possible
for reduction to proceed non-deterministically or in parallel [128]. We will
not further discuss logic languages in this thesis.

Functional languages treat computation as reduction of terms of the
lambda calculus [21]. Examples of functional languages include Haskell [135],
Sisal [54], the ML family [112, 119] and Miranda® [134]. A functional lan-

guage consists of syntactically-sugared lambda terms, which provides a far

6Miranda is a trademark of Research Software Ltd.

26 Multiset transformation...

richer set of primitives than that provided by pure lambda calculus. Pro-
grams are written such that the entire program is actually a single lambda
expression [49]. Computation consists of reductions of the lambda term
until a normal form is reached (actually, most functional language imple-
mentations terminate execution of a program once a weak head normal form
(WHNF) is reached [49, 64]). As in the case of logic languages, it may be
possible that several parts of the term can be reduced in any order or even
in parallel [113, 42, 43].

MSTLs live in the space between imperative languages and declarative
languages. Like declarative languages, they describe the ‘what’ rather than
the ‘how’ of a program by omitting many of the implementation details
of a program. For example, the I' sort() program of 1.1.2 can be used
to generate a straightforward logical definition of a sorted list, by simply
negating the reaction condition on the single primitive function. That is, we
can define a sorted list L as:

=(3(¢1,v1), (i2,v2) € L.il > i2 Av2 < v2)

A difficulty with current declarative languages

Actually, the situation is even curiouser: for many problems, an MST pro-
gram is more declarative in style than a naive functional program, because
the unstructured state imposes no requirements on the order of function
application to data elements. To illustrate this point, we compare different
versions of programs which add a number of integers. We give a typical
functional-programmer’s solution, written in Miranda. The numbers are
placed into a list and passed to function sum.

sum [...]
where sum nil = 0
sum (head:tail) = head + (sum tail)

This program should be read as follows: recursively traverse the list,
adding each number to the total as you come to it. Stop when the list is
empty.

Compare this to the I' program of Section 1.1.2. This program will re-
peatedly add pairs of numbers, placing their sum into the multiset. Only
when the multiset is of cardinality one will the function be inapplicable,
leading to termination of the program. The remaining element in the mul-
tiset is the sum of the original elements. Notice that, unlike the functional
program, the multiset version of the program imposes no ordering on remov-
ing elements from the multiset. Indeed, the program can even be executed
logically in parallel.

In the light of our example, we can clarify our previous observation that
[’s programming style is more declarative than that of a declarative lan-
guage. We must write a functional program in terms of data structures which
impose extra-logical sequentiality on the ordering of function applications.
This requirement introduces algorithmic aspects into what is, allegedly, a
declarative program.

...you are what you eat. 27
1.2.6 Formal languages

Another application which suggests itself is using MSTs to generalise formal
languages [124, 125]. Formal languages describe the sets of strings generated
by recursively applying rules to initial strings. With MST and, in particular,
I', we have a notion of applying functions recursively to an initial multiset.
All the possible multisets which could be generated by this process would
be regarded as ‘words’ in the ‘language’ defined by the rewrite rules. The
connection between formal languages and I' is accentuated by the similarities
between a set of production rules in a formal language and an interleaving
composition of (recursive) primitive functions in T'. So far, the only serious
work which has been done in terms of understanding the connection between
MSTLs and formal languages is in the area of Lindenmayer systems (L-
systems) [91].

Lindenmayer systems were proposed as a formal model of plant devel-
opment. An L-system consists of a set of conditional rewrite rules (produc-
tions) which are applied to a string of symbols. All elements of the string are
rewritten at every production step: if no production applies to an element of
that string, then the identity production is applied. L-systems have the cu-
rious property that a topological tree (the ‘plant’ being grown) is embedded
in the string. For this purpose, matching pairs of angle brackets are added
to the string to indicate the beginnings and ends of branches.

For more sophisticated models of plant growth, context-sensitive L-systems
were developed [115]. These are known as IL-systems, where the ‘I’ stands
for ‘interactive’. In IL-systems, rewrites are carried out in a ‘data context’,
which means that some substring of the string is examined in addition to the
element to be rewritten (the predecessor). The data context has to be local
to the predecessor in the sense that the data context has to straddle the pre-
decessor or be adjacent to it. Using IL-systems, much more complex models
of plant growth can be built, incorporating propagation of auxins (plant
hormones) through the growing structure to alter its development [115].

For sophisticated plant models, we have seen that data context and logi-
cally synchronous rewrites are needed. These we discuss, in terms of multiset
transformation, in Chapter 3. Good overviews of L-systems can be found
in [122, 123, 116, 118].

1.2.7 Physical modelling

MST languages frequently exhibit nondeterministic behaviour as a result
of the multiset’s lack of structure and the parallel (or interleaved) compu-
tation model which accompanies it. In fact, as we have already remarked
in Section 1.2.6, many MST programs look more like production systems
such as OPS5 [38] or grammars [124] than conventional computer programs.
This apparent family resemblance [144] led some to wonder about MST’s ap-
plicability for modelling physical phenomena. Typically, we could imagine
modelling individual objects such as particles as elements of the multiset:
interaction could be described by a number of production rule-like functions,
executing in an interleaved or parallel fashion. We examine some of the pos-

28 Multiset transformation...

sibilities below, after giving some more motivation for the orientation here
suggested.

Accurately modelling physical systems using computers requires that ap-
propriate abstractions of physical phenomena be made: computers’ discrete
nature, coupled with their finite resources and limited execution speeds,
makes direct solution of many numerical models intractable [57]. Therefore,
explicit simulation of system’s evolution is often undertaken [120]. However,
whenever abstractions of realistic physical situations are made in the name of
making a model computationally feasible, the question arises as to whether
and how the abstractions made affect the simulation results obtained. To
ameliorate this potential problem as much as possible, it is therefore desir-
able that the simulation’s model be as close to the physical reality as possible.
We can easily grasp the intuitive appeal of a model in which physical laws
are implemented as functions, physical objects (or parts thereof) are mod-
elled as elements of the multiset, and very little explicit control-flow has to
be encoded in the program: every function is merely applied to all particles
logically in parallel, or in an interleaved fashion. After all, in nature, it
would appear that ‘sequentiality’ indicates the presence of dependencies be-
tween different processes rather than a ‘formal’ requirement that one process
terminates before another starts.

AlChemy

A fascinating example of this kind of model is presented in the work of Wal-
ter Fontana and Leo Buss [51, 50, 52], who build abstract models of chemical
reactions in order to understand how complex molecules could arise out of
collections of simpler models. Their model makes use of an abstract, unstruc-
tured, multiset of A-terms [21] which play the role of the molecules. At every
time step, two lambda terms are selected at random from the solution (the
multiset). These two ‘molecules’ are then made to ‘react’ with each other.
The reactions are modelled by function application and a slightly modified
form of B-reduction [21]. The reaction products are placed back into the
multiset. The cardinality of the multiset is kept constant by an analogue of
a flow reactor [129], which arbitrarily throws elements of the resulting mul-
tiset away until the desired cardinality is reached. Comparisons are made
between the results obtained when the reactions are ‘catalytic’ in the sense
that the parents of the reacting molecules are placed back into the multiset
and when the reactions are not ‘catalytic’. Furthermore, investigations are
undertaken into multisets of terms which are auto-catalytic. Auto-catalysm
is the ability of solutions of molecules to regenerate themselves when some of
the molecules are removed. This is achieved through the complex and mu-
tual catalytic relationships between the different substances, ensuring that
missing substances can be regenerated through reactions between the re-
maining substances in the solution. Auto catalytic solutions are therefore
self-maintaining, a crucial property for living organisms and the reason why
they are so interesting for origin-of-life researchers.

We show how to implement AlChemy in an MSTL in Chapter 2.

...you are what you eat. 29

Cellular automata

Another model which is similar to L-systems is Cellular Automata [145]. A
cellular automaton can be defined in many ways (see, for example, [136] for
a good overview), so here we will merely sketch a definition, due to Wol-
fram [145]. A CA consists of an n dimensional array of cells and a set of
rules governing how the state of a cell at time ¢ + 1 is related to the states
of its neighbours and itself at time t. We leave unspecified which cells are
considered neighbours: clearly, there are several possibilities. According to
Wolfram, rules have to be symmetrical in the sense that any orientation of
a predecessor (sub-)state produces the same successor (sub-)state. In other
words, rotations of the space in which our rewrites occur does not effect the
results of the rewrites. In terms of physical concepts, this requirement is
required to guarantee isotropy and homogeneity in the automaton’s evolu-
tion [145, Page 8, footnote]. Additionally, symmetry between the treatment
of zeros and other integers is broken by requiring that any configuration of
zeros cannot be rewritten to anything apart from zeros. This condition is
known as a ‘quiescence’ condition: non-zero elements cannot spontaneously
arise. In terms of physical intuitions, the quiescence condition demands
that nothing can come into existence out of nothing. Interestingly enough,
Sands’ remark that I programs cannot rewrite non-empty multisets and ter-
minate [126, 127] seems spiritually related to this aspect of CAs. In a similar
vein, L-systems do not allow productions to produce successors from empty
predecessors, for precisely this ‘philosophical’ reason.

At every time step in a cellular automaton’s evolution, all cells are up-
dated by applying the relevant rule to them (usually, only one such rule is
applicable to each cell). The result is a logically synchronous parallel up-
date of all cells at every time step. An example evolution of a five state
automaton can be seen in Figure 5.15 in Chapter 5.

To relate CA to L-systems, we can see that L-systems are a generalised
case of 1-D cellular automata. There are at least four differences between
the two models:

1. CA rewrite rules possess rotational symmetry: the rules have to have
(in the language of L-systems) identical left and right data contexts.

2. Quiescent conditions are not required for L-systems: rules can rewrite
anything to anything.

3. In CAs, the size of the context (predecessor set) required for each
rewrite is determined globally. In L-systems, it is determined locally.
This flexibility on the part of L-systems makes it possible for the pre-
decessor sets for different productions in L to be different sizes.

4. L-systems often include symbols which are ‘invisible’ during context
determination, but are used for interpreting the string to produce a
graphical output. Such ‘phantom’ elements (they cannot be seen and
yet they exist) do not exist in CAs.

30 Multiset transformation...

5. The boundary conditions for CAs are different from those of L-systems.
In L-systems, the string grows and shrinks as productions are applied
to it. No circular boundary conditions are possible: the string has a
definite beginning and a definite end. In CA, the situation is somewhat
different. Rewrites take place in either (i) a logically infinite array or
(i) a finite array with some boundary conditions (often circular). In
neither case does the array itself change size as rewrites progress.

We mentioned earlier that a plethora of definitions exist for cellular au-
tomata. The variants include Lattice Gas [55], asynchronous CA [92], Dimer
automata [130], Ising systems [93] and Diffusion-Limited aggregation [143].
Each of these alternative systems has its own particular characteristics, be
they in the form of the array or in the mechanisms for rule application.
Below, we discuss diffusion-limited aggregation models in more depth, be-
cause we use DLA as an example of probabilistic multiset transformation in
Chapter 4.

The similarity of rules in CA to primitive functions in an MSTL lead one
to believe that the former can be encoded in the latter. This is, indeed, the
case, as we shall see in Chapter 5.

Diffusion-limited aggregation

Diffusion-limited aggregation (DLA) was introduced in [143] and has been
used to describe a number of accretive growth phenomena, including ice
crystal formation, mold growth and dielectric breakdown [111]. DLA is
actually a form of probabilistic cellular automata (CA), which are described
above. The diffusion-limited aggregate begins with a single occupied site on
a lattice. Beginning at random positions on a circle with radius b centered
on the occupied site, a particle begins a random walk. Such particles are
known in the literature as ‘walkers’. If a walker crosses a circle of radius
d > b, centered on the occupied site, then it ‘dies’ i.e. is removed from
the lattice. If it is adjacent to an occupied site then it accretes onto the
growth form with a probability which can be intuitively interpreted as the
‘stickiness’ of the accreting material. Once the current walker has either died
or accreted onto the growth object, a new walker is released. The process
continues. As more walkers accrete onto the growing form, the more the form
takes on a filamentous shape called a DLA cluster with a box dimension [47]
of 1.67. More work on DLA clusters is described in [140, 80].

Genetic algorithms

Genetic algorithms (GA) were introduced as an optimisation technique based
upon a metaphor of natural selection within a gene pool. A genetic algorithm
(of which there are many variants, see [44] for a survey) takes a multiset of
‘genetic material’, normally represented as strings of equal length. At each
iteration, sexual reproduction is mimicked by choosing at random two of
the strings (the genetic material of the mates). A point within one string is
chosen at random and the material from that point in the string is swapped

...you are what you eat. 31

with the material from the corresponding point in the other string. This
stage is known as ‘crossover’, again using the genetic analogy. The resulting
string is placed back in the population with its ‘parents’. Finally, one string
is chosen from the multiset and discarded, representing the death of one of
the organisms in the population.

In some variants of GAs, occasional ‘mutations’ alter the values of single
or multiple parts of a string. Such ‘mutations’ enable the GA to explore a
larger part of the search space than would otherwise be possible [63].

For selection purposes, each string is assigned a ‘fitness’; such that fitter
strings are more likely to be chosen than less fit strings. A normal implemen-
tation of a genetic algorithm proceeds by calculating the sum of the fitnesses
of all the strings and then, for each string i, allocating a probability p such
that:

oS
' ZZ:lfk

where f; is the fitness associated with string i.

GAs are related to MSTLs in that they transform a multiset of genetic
material. The probabilistic selection of members of the population for each
sexual reproduction step has (in part) inspired the work on probabilistic
MST, described in Chapter 4. Genetic Algorithms and their implementation
in an MSTL are discussed in Section 1.2.7 of Chapter 4.

1.3 Open problems in MST

In the previous sections, we described a number of the areas in which MST
models have been developed or, at least, seen to be useful. Our intention
was to show how compelling MST is in a variety of different areas. In every
case, striking similarities exist between the different MST models and lan-
guages. So, it would appear natural to assume that MST models fulfill some
important function for many fields. With this survey giving us motivation,
we claim that we can satisfy the reader who wishes to ask ‘why do you use
MST at all?’. Furthermore, all of these areas have influenced the work re-
ported in this thesis, which hopefully helps to ensure that this thesis reports
results of relevance to all of the areas mentioned above. Finally, the unified
model for parallel transformation presented in Chapter 2 of this work is able
to capture a large number of the formalisms here described: a testimony to
its power and applicability.

Unfortunately, MST is not yet a mature discipline: much work remains to
be done. Some of these open problems relate to particular languages (mainly
I') while others are more general problems which one would expect to arise
whenever multisets are used as data structures. We claim that several of the
difficulties are genuine bugs in particular languages; other problems are only
evidence of areas which have not yet been fully investigated.

This thesis tackles the problems described below, except for that of effi-
ciency, although it does not claim to provide a final answer to each of those
it does address.

32 Multiset transformation...

1.3.1 Efficiency

Arguably the most pressing problem with multiset transformation languages
is that of efficiency”. When a function is applied to the multiset, a search has
to be performed for elements which satisfy the desired properties. Efficiency
issues have been addressed for Linda [58] implementations, with reasonable
success [142]. However, most MSTs allow that more than one element be
removed from the multiset at the same time, causing the basic complexity
of access to a multiset to rise. One might be tempted to think that the
inefficiencies can be reduced by altering the control-flow behaviour of the
program so that functions which cannot be applied are not even tried. For
example, in order to gain efficiency (perhaps for particular architectures),
mechanisms are proposed whereby interleaving operators can be replaced
by sequential operators, and vice-versa [65, 66, 67]. Actually, these solu-
tions do not address the problem: the inefficiencies arise because of the
multiset search itself. Altering the control-flow behaviour of a program only
slightly mitigates the problem, by reducing the constants associated with the
complexity. The basic complexity stays the same. Consider the following
argument:

The complexity of applying a single primitive function to the multiset is
O(n!/(n-a)!), where n is the cardinality of the set and a is the arity of the
function. For a binary function, we therefore have a complexity of O(n?) for
a multiset of cardinality n. In a sum of primitive functions, the complexity
of termination detection is O(n!/(n-a)!), where a is the largest arity of any
of the primitive functions.

Replacing the parallel composition with sequential composition saves
only a factor 2 (if the functions have the same arity) which is insignificant
compared to the complexity of applying either of the primitive functions
to the multiset. Therefore, the problem of efficiency has to be tackled by
reducing the cost of the multiset search. One possibility is to give the mul-
tiset structures. We say very little about multiset structuring in this thesis,
although some work can be found in [97, 53].

1.3.2 Compositionality

For a programming language to be usable, its constructs have to behave
identically when placed in larger contexts: the properties of the whole pro-
gram must be deducible from the properties of its parts. This property is
called compositionality. Unfortunately, a number of multiset transformation
languages lack this property, leading to the programmer’s job being made
much more difficult than it might otherwise be. A number of examples of
non-compositional behaviours in MSTs are well known [37]: these and other
curiosities can be found in Chapter 2.

"Where efficiency is defined as the ability of a program to terminate before the person
who wrote it.

...you are what you eat. 33
1.3.3 Flexibility

Another issue of enormous importance is that of flexibility. Coordination
languages must make minimal assumptions about the programs they coor-
dinate in order to be as widely applicable as possible. This is manifestly not
the case for some MSTLs. We give some examples below.

Non-atomic primitive functions

The T' model assumes that all primitive functions are atomic. When com-
bined with the semantics of interleaving composition (which states that a
composition of programs applies at most one of the components to the mul-
tiset at every execution step), we notice that all functions must block while
they are applied to the multiset. If functions are significant pieces of code,
their blocking will easily negate any advantages won by executing programs
in parallel. To avoid this potential pitfall, we need mechanisms for establish-
ing asynchronous state update and access for larger programs, one candidate
for which is discussed in Chapter 3.

Data contexts

Many programs require the ability to examine parts of the state without
trying to update it. Examples are given in Chapter 3. Most MSTLs, such
as I' [65] and CGP [37] do not provide such a mechanism as primitive.
Although a function can remove an element of the state and then place it
back unchanged, we demonstrate in Chapter 3 that such a programming trick
is not appropriate when multiple functions are being executed in parallel and
wish to examine the same elements of the state.

Aborting and deadlocking primitive functions

MSTLs such as I' and CGP lack a notion of primitive functions which abort
or deadlock. When used as coordination languages for programs which can
exhibit deadlocking and abortion, they cannot but be inappropriate. For
example, we may wish to coordinate a number of badly-written C programs
using I'. The chances are that one of these programs will abort with a core
dump. The semantics of the coordination language has to be able to cope
with this gracefully.

We show how primitive functions exhibiting aborting and/or deadlocking
primitive functions can be incorporated into an MSTL in Chapter 2.

Unstructured data hides sequentiality

MST enthusiasts frequently claim that the multisets’ unstructured nature
makes for highly parallel implementations [16, 20, 65]. Although this may be
the case, it need not be the case. Many programs appear to be highly parallel,
because the programs contain a large amount of data or a large number of
functions composed in parallel. However, the multiset’s lack of structure
hides the real data dependencies, which in practice will severely limit the

34 Multiset transformation...

available parallelism. Consider the following I' program, which has an infinite
number of functions in a parallel composition, but a maximal parallelism of
one. We use Pnm to indicate a primitive function (Az.z = n, Az.{m}) (i.e.
a primitive function that converts an n into an m, if an n is found in the
multiset).

(P01 + P12+ P23 +...,{0})

At the other extreme, we can write [programs containing no interleav-
ing or parallel compositions, but which can be executed with an infinite
parallelism:

((}{{,A),{O,l,Q,...})
R(z) = True
Alz) = {z+1}

Aside from these two pathological examples, we frequently find that an
apparently parallel program is afflicted by hidden data dependencies. The
following example is a transparent case:

P12 + P21

The potential parallelism of this program depends upon the values in the
multiset. Therefore, techniques to derive the program’s parallelism must
examine the multiset. Unfortunately, the multiset is often not available to a
compiler analysis, being provided later as input to a program.

The problem is that logical parallelism is a property of a algorithm while
physical parallelism is a property of an implementation. Converting the
former into the latter is not easy [2]. Real understanding of the parallelism
available to a particular MST program and the extraction of that parallelism
by a compiler, remain non-trivial tasks. So even in the case of MSTLs, there
appears to be no such thing as free parallelism.

1.3.4 ['’s problems

In the previous section, we concentrated on problems common to all MSTLs.
This (smaller) section draws the readers attention to a few of I'’s more
obscure difficulties. Since the research reported in this thesis stands on I'’s
shoulders, much of the research has been driven by I'’s idiosyncrasies.

One-shot functions

I' lacks one-shot functions. That is, even a primitive function in I' will
continue to be applied to the multiset until it can be applied no longer.
As Sands has observed [126, 127], this behaviour implies that no ‘big bang’
program exists. That is, there is no I' program which can be successfully
applied to the empty multiset once and then terminates. This behaviour
is unfortunate, because without one-shot functions we can’t even initialise

...you are what you eat. 35

our programs. A good example of this is when a user is required to input
some information which is used to generate the initial multiset. Without
the possibility of writing proper initialisation routines, this kind of program
becomes almost impossible to write in practice, as the programmer fights
to force termination of the initialisation functions and to let the program
proper start.

Recursion and conditionals

I' lacks a general notion of recursion. In other words, although recursion
exists in ['—all primitive functions are implicitly recursive—it is not possible
to write arbitrary I' programs which are recursive. For example, consider a
program which asks the user to input a list and then sorts it. We can write
the program like this:

(sort_list o get_list_from_user, ()

But now consider that we wish to write a program to repeatedly per-
form this task. In conventional I', we have no recursive operators which are
applicable to programs, so our example is almost impossible to write (see
Chapter 5 for an example of this).

This problem has been addressed in [65], wherein a solution was offered
in the form of a binary iterator operator ‘«x’. P x (Q repeatedly applies P
then @ until neither can be applied. The iterator therefore allows us to
write the above program. Unfortunately, adding the iterator does not solve
the problem of one-shot functions, mentioned above.

As an alternative mechanism, we propose that all primitive functions are
one-shot. That is, regardless of its success, a primitive function will only be
applied once. To build recursive programs, we suggest that the programmer
make use of conventional recursive constructs (such as ‘p-operators, used
in 2). In order to ensure termination when a program is not applicable as
well as recursion when it is, we also require the presence of a conditional in
the language. Our proposal is introduced and examined in Chapter 2.

1.4 The motivation for this thesis

This thesis discusses aspects of multiset transformation languages from the
point of view of the applications. While there is still a certain amount of
formalism in the thesis (about half the thesis is formal semantics), we allow
practical considerations to drive the research to the extent of motivating
the addition of new capabilities to the formalisms. In particular, our PT
formalism (introduced in Chapter 2) is a product of attempting to write the
applications of Chapters 4 and 5.

Our choice of orientation motivates us to propose a new multiset trans-
formation model and describe a number of applications. Most of these ap-
plications come from theoretical biology, where a large amount of work has
been done in modelling plant growth using formal languages (see Chapter 3
for more details).

36 Multiset transformation...
1.4.1 The structure of this thesis

Broadly speaking, the thesis contains two parts. The first, consisting of
Chapters 2 and 3, is a formal treatment of control-flow coordination in
MSTLs. In these chapters, we develop a unified framework for parallel
transformation, called Parallel Transformation (PT)®. We show that PT
can be used to encode many formalisms for parallel programming. By pre-
senting a unified framework, we make it possible to describe a great variety
of different behaviours for programming constructs. This, in turn, enables
us to compare and contrast the particular advantages and disadvantages of
each construct. In Chapter 2, the discussion concentrates on issues aris-
ing when programs exist in interleaving compositions with other programs.
Constructs which behave differently in different program-contexts we refer
to as program contezt-sensitive. In addition, we discuss interleaving opera-
tors which synchronise when none of their components can be successfully
applied to the multiset. We call such operators failure synchronous. The
chapter is abundantly illustrated with examples.

In Chapter 3, we discuss the influence on program reduction of the ability
to read elements from the multiset without removing them. Such elements
we christen the data-context of the reduction. We also consider the effect
of reductions which can happen logically simultaneously: true parallelism.
Operators which can perform in this way we call success-synchronous as an
antonym to the failure synchrony presented in the previous chapter. Exam-
ples and motivations are given throughout.

The second part of the thesis is more application-oriented and consists
of Chapters 4 and 5. All of the examples given are small, although we
hope to convince the reader of the applicability of MSTLs to a wide variety
of application areas. In particular, our examples demonstrate MSTLs used
to coordinate very simple primitive functions. The most important class of
such programs is that of production systems [91]. In real-world applications,
we would expect that coordinated components would be complete software
systems in their own right. Unfortunately, such systems are not examined
in this thesis: it was decided to work towards a full understanding of the
basic concepts involved in coordination before undertaking any large-scale
projects.

In Chapter 4, we discuss how to make multiset rewrites in MSTLs proba-
bilistic, so that stochastic applications such as those prevalent in the physical
modelling community, can be modelled. As ever, the chapter is illustrated
with a posse of examples. The second of the two chapters, Chapter 5, de-
scribes applications of MSTLs to biological modelling. We demonstrate a
number of fractal plant-like objects and a cellular automaton. Our exam-
ples demonstrate how the ability of MSTLs to coordinate several primitive
functions pays rich dividends when modelling this kind of system.

After the four chapters of ‘meat’, we conclude the thesis with the dessert:
a summing up, a drawing of conclusions and a discussion of possible future
work.

80ne referee has chastised me for this ‘uninformative’ name. To him, I suggest that
PT stands for ‘Pointless Terminology’.

Chapter 2

A unified semantic
framework for parallel

transformation!

In this chapter, we offer PT, a parameterised structural operational seman-
tics (SOS) which abstracts from interaction with the state and from the
dynamics of program reduction. The SOS can be used to mimic particular
languages by choosing the appropriate parameters. Interaction with the state
is determined by parameters which give both the form of the state and de-
scribe the result of applying a primitive function to the state. The dynamics
of reduction are controlled through quantifying how interesting a particular
reduction is, where the most interesting offered reduction is chosen when
more than one reduction is possible. Furthermore, the parameters control
what happens when none of the possible reductions is ‘interesting enough’,
thereby capturing a number of synchronisation effects. PT is therefore a
flexible semantics which can be used as a tool for language classification, for
language design and for comparing different dialects of the same language.

We use PT to analyse the program context-sensitivity and synchronisa-
tion on failure properties of a number of multiset transformation languages
(we restrict ourselves to multiset transformation languages for reasons of
space). Some of the languages here compared are new, while some have
already been proposed in the literature, such as Gamma (I') and Calculus
of Gamma Programs (CGP). All of the languages are translated into PT
to facilitate comparison of their (dis-) similarities. The result of our com-
parison is a taxonomy of the languages, based on their parameters. Our
classification is constructed in such a way that it is possible to define new
languages to occupy the currently blank areas of the taxonomy.

IThis chapter is an extended version of the paper “Context sensitivity and synchro-
nisation as taxonomics for parallel programming” which appeared in the 30th Hawaii
International Conference on System Sciences, Maui, Hawaii in January 1997 [96].

37

38 A unified framework...
2.1 Introduction

Many languages for parallel programming include a binary operator indi-
cating that reductions of its two components are to be interleaved. The
question arises of how they are to be interleaved. Aside from questions of
fairness [4], we could ask whether or not the choice of which component
to reduce next is dependent upon the possible transformations which both
components can make. For example, we can imagine wanting component
A of the composition A ||| B to be chosen every time that A can be suc-
cessfully applied reduce and B cannot. Interleaving operators which behave
in this way possess the program context-sensitive reduction property (in the
terminology of [37]). For example, the interleaving operators of Ciancarini’s
CGP [37] and of Gamma [20] are program context-sensitive (CS), but in dif-
ferent ways. In contrast, program context-insensitive (CI) operators simply
choose one component of the composition and reduce it by one step, with-
out regard to those reductions (if any) offered by the other component of the
composition. The interleaving operators of while-like languages tend to be
context-insensitive [28]. We should distinguish CS versus CI as described in
this chapter from internal and external choices as described in [109]. Internal
choices are not interleaving choices and are always CI while external choices
are interleaving choices and may be either CS or CI.

In addition to being CS or CI, some interleaving operators reduce both of
their components synchronously when neither can perform any reductions.
We call languages with this property failure synchronous (FS). Gamma,
CGP and Dijkstra’s Guarded Command Language (GCL) [46] are FS, but
in different ways. Other interleaving operators (such as those in conven-
tional while languages), are not FS. Notice that failure synchrony is only
an interesting property for a language to possess when that language is CS.
In CI languages, the notion of some reductions being favoured over others
does not arise: all reductions are a priori equally interesting. Furthermore,
interleaving compositions of programs can behave in different ways if one of
them aborts or deadlocks.

Given the plethora of different varieties of interleaving, it would be useful
to have a framework within which several (or, at best, all) of the different
flavours could be described. This would allow a formal comparison of the
possibilities each offers. In particular, such a framework would allow us to
investigate the effects of incorporating different interleaving operators in the
same language and to appreciate the differences made to a language by a
particular operator.

In this chapter, we attempt to give such a unifying framework, which
we christen PT (for Parallel Transformation). Fundamental to PT is a for-
malisation of how interesting a reduction is, such that the most interesting
reduction is chosen, when more than one reduction is possible. By specifying
the levels of interest associated with every possible reduction, we can control
which reductions must be chosen in which situations.

In Section 2.2, we describe PT both informally and formally. In Sec-
tion 2.3, we give translations into PT of a number of multiset transformation

...for parallel transformation. 39

languages including I'; CGP and a number of new formalisms. In Sections 2.4
and 2.5, we use PT as a vehicle for discussing the differences between a num-
ber of interleaving operators. Finally, we mention some related work, discuss
possible avenues for future exploration and draw our conclusions.

2.2 Introducing PT

PT consists of a parameterisable structural operational semantics (SOS [114])
which abstracts from both the state and the level of interest associated with
each reduction. We choose an SOS as our vehicle both because (i) all the
languages which we here encode into PT have been presented in terms of
an SOS and (ii) because we are interested in an operational view of different
interleaving operators. Our latter motivation stems from our desire to use a
semantics as the basis for an implementation, with which real programs can
be executed.

Our reasons for parameterising the interaction with the state and the
levels of interest associated with each reduction, are twofold:

e We want to be able to encode a number of variants of interleaving
composition within PT. To do this, we introduce the notion of levels
of interest.

e We want to be able to encode, in PT, a number of formalisms which
make use of different kinds of state (functions, multisets, sets of variable-
value pairs etc). For this purpose, we abstract from the state of the
computation.

Abstraction from the state and from the levels of interest are performed
by introducing the notions of a selection function (S function) and an interest
tuple (i-tuple). An S function provides an interface between the program
and the state. By defining the interface between the program and the state,
it enforces the form of the state and enforces what constitutes a stable state.
We shall see the exact role of the S function and the i-tuple in the formal
semantics of PT, given below. Stability of a state is important because
recursive (sub-) programs terminate when a fixed point is reached i.e. when
the state is stable with respect to that program. Thus, the precise definition
of stability defined in the & function, determines the termination condition
for (recursive) programs. Primitive functions (described in Section 2.2.1) use
S functions to mediate their interaction with the state. A certain amount
of computation (such as a state update) is associated with an S function.

An i-tuple is a four-tuple containing the levels of interest associated with
certain kinds of reduction. It is these levels of interest which are used to
determine which offered reductions are most interesting and therefore which
reductions can be performed. We explain both S functions and i-tuples
formally in Section 2.2.2.

A particular parallel language is defined by giving an i-tuple, a S function
for every possible kind of interaction between the program and the state and
a set of construct definitions in terms of the connectives available in PT.

40

A unified framework...

PT therefore defines a family of languages, at least one for each i-tuple and
combination of & functions.

2.2.1 The syntax of PT

We introduce the following syntactic categories for PT:

i ¢ p (data)
o € X def (pD)* U{L,A} finite states
€ B d:ef D* — Bool predicates

A € A d:ef D" - X% action functions
of e L L (No, <) labels

O € O def LxLxX S function output

s es % BLALS 0 S functions

i e 1 ¥ LiLxLxL i-tuples

We leave the underlying domain D undefined, although it can be as-

sumed, for the sake of intuition, to include at least integers, booleans and
tuples thereof. pD is the power multiset of D. L is used to indicate abor-
tion. A is deadlock. Bool = { True, False }. INj is the set of natural
numbers, starting at zero. (INg, <) is a reflexively totally-ordered set. We
order the labels so that the notion of ‘largest label’ is well-defined. The
labels offered by a reduction are used to calculate which possible reductions
are most interesting.

PeP d:ef € the empty program
X program variable
(B, A,S) primitive function
PP sequence
P | P choice
P ||| P interleave
P E P, P condition
uX.P recursion

Figure 2.1: The abstract syntax of PT.

The abstract syntax for PT is given in Fig. 2.1. We give the intuitive
meanings of the various operators. All of these behaviours are described
formally in Section 2.2.3. A primitive function is applied to the state and is
then discarded. Primitive functions are the only functions which can either
read or alter the state. P § () indicates that P is to be reduced before Q.
P ||| @ is an interleaving composition. P | @ is a non-deterministic choice.
A recursive program is written uX.P, where X may be free in P.

...for parallel transformation. 41

The conditional is non-standard. P > Q@ : R can be read as ‘if P then
Q@ else R’, where the reduction of program P can change the state of the

computation. The purpose of n in P > @ : R is to keep track of the
maximum level of interest associated with any reduction of P. We shall see
in the SOS of PT that, if the (maximum) level of interest associated with

a reduction is greater than a certain threshold, then € > Q@ : R will choose
Q; otherwise it chooses R. The conditional therefore corresponds to a more
general version of a conventional if ...then ...else ... conditional, where the
condition is an arbitrary program which is applied to the multiset instead
of (as is usually the case) a truth-valued function. The use here therefore
corresponds to that of P 7 @ : R in C [82].

2.2.2 The anatomy of a selection function and of an
interest tuple

We have already said that we wish our interleaving operator to pick, at
every step, the most interesting possible reduction. In order to do this,
every reduction has a pair of labels associated. with it. As we (formally)
stated in Section 2.2.1, these labels are natural numbers. For each derivation
step, the labels of all possible reductions are calculated on the basis of which
transitions each (sub-) program can perform.

The labels originate with the selection function, which defines how a
primitive function is applied to the state (we ignore the case here of rewriting
of empty programs). The labels then percolate down through an SOS proof
tree (perhaps being modified along the way) until they get to the root. In
the root of the tree, the actual reduction to be performed is chosen: it is
simply the most interesting one offered. The key to understanding the levels
of interest associated with PT reductions is therefore an understanding of
the labels returned by the selection function and the ways in which these
affect the final reduction choice taken.

We give an example S function and i-tuple and explain their components.
The type of an S function is given in section 2.2.1.

def [(suce, succ,o[AF/d]) if 3¢ Co.BG
Sr(B.A.0) = { (fail, fail,o) otherwise
ir def (semi, cond, sync, if)
where L > semi, cond, sync, if, succ, fail
and (if = fail) < sync < (semi = cond = succ)

The selection function St given above applies a condition B to a multiset
0. On the right-hand side of the function, we use some shorthand to explain
how the condition is applied to the multiset. The condition is applied by
searching for a subset of the multiset which, when ordered in some way,
causes condition B to be true. The ordered sub-multiset of o is written &. If
there is such a subset of the multiset, then the left-hand side of the selection

42 A unified framework...

function indicates that the elements of ¢ in the multiset are replaced by
Ad'. Labels succ and succ are also returned, indicating that the primitive
function was successfully applied to the multiset. If no such sequence of
elements can be found, then the old state is returned, together with the
labels fail and fail, which indicate that the attempted primitive function
application failed. We shall see this description of the use of the selection
function formalised in Section 2.2.3.

Observing the syntax of PT in Fig. 2.1, we notice that the program com-
position operators are sequential composition, interleaving composition and
the conditional. All three of these make use of or alter the levels of interest
associated with reductions of their components. The latter two make use of
the levels of interest associated with their components to determine which
sub-program to choose. For interleaving composition, a non-deterministic
choice is made between two possible reductions. The conditional makes a
deterministic choice between the two possible right-hand sides of the opera-
tor (the ‘then’ and the ‘else’ parts). Of all the operators in PT, the behaviour
of only these two are affected by the levels of interest associated with a re-
duction. To capture this effect, performing a reduction yields two labels,
the first of which indicates how interesting the conditional finds the reduc-
tion (‘the level of interest from the point of view of the conditional’) and
the second of which indicates how interesting the interleaving operator finds
the reduction (‘the level of interest from the point of view of interleaving’).
The presence of a reflexive total order on the labels means that some labels
are greater than others and, therefore, indicate more interesting reductions.
The ordering on the labels are given above. For each i-tuple and, therefore,
each class of languages, a different ordering on the labels can be given. The
potential for specifying different orderings on the labels gives rise to much of
the power of PT (the rest comes from the ability to specify different selection
functions for every primitive function). The levels of interest determine the
actual choice of reduction taken in two ways:

e The interleaving operator chooses the most interesting reduction which
it can perform, if that reduction is at least as interesting as sync. If it
is not, then one or both of the components of the interleaving operator
are rewritten without altering the state.

e The conditional rewrites to its ‘then’ branch or its ‘else’ branch. Which
one of these transitions occurs depends upon how interesting were the
reductions performed on the condition. The level of interest which the
conditional considers ‘interesting enough’ to rewrite to its ‘then’ clause
is specified by cond.

Parameter semi indicates the minimum level of interest associated with
a sequential composition, from the point of view of interleaving composition.
In other words, any reduction within a sequential composition has a level
of interest for the interleaving composition of at least semi. Parameter
sync gives the level of interest required before a transition in an interleaving
composition is considered interesting enough to perform. If both reductions

...for parallel transformation. 43

available to an interleaving composition are smaller than sync, then one
or both components of the composition are rewritten without altering the
state. Parameter cond gives the level of interest required for the condition

S Q@ : R to rewrite to Q. If n < cond, then € S Q : R is interesting enough
to rewrite to R. Finally, label if gives the minimal level of interest associated
with a conditional, from the point of view of interleaving composition.

2.2.3 The formal semantics of PT

We introduce configurations:

(P,o) € Conf def P x ¥ configurations

We can now give an operational semantics to PT using the labelled tran-

sition system (P,L,{(a:’@| a,B € L}). The labels a and B are used to
convey the levels of interest associated with a reduction from, respectively,
the points of view of the conditional and the interleaving operator. The SOS
of PT is given in Fig. 2.2. A short explanation of the rules follows.

The function application rules App; and App2 apply a primitive func-
tion to the state, yielding a new state and a pair of labels. The labels are
generated by the selection function and indicate the levels of interest associ-
ated with the (attempted) function application. The meaning of 3¢ C ¢ in
Appi and App- is explained on Page 13. If the applied primitive function
does not deadlock, then App; throws the primitive function away (reduces
it to the empty program) and updates the state. If the applied primitive
function does deadlock, then Apps ensures that the deadlocking program
is retained. Chsy, and Chsgr make a non-deterministic choice between, re-
spectively, their left or right components. This choice is internal in the sense
of [69]. Int; throws away the resulting program and state of untaken tran-
sitions, but requires the labels to determine which of the transitions is most
interesting. Furthermore, Ints states that, if neither reduction is at least
as interesting as sync, but one reduction is nevertheless more interesting
than the other, the program associated with the most interesting reduction
is reduced without altering the state. Intg states that, if both reductions are
equally interesting and are less interesting than sync, both resulting states
are thrown away and both programs are synchronously reduced. Ints and
Int3z allow us to capture failure synchronous operators, wherein one or both
inapplicable functions are reduced without affecting the state. The Int.
and Int., rules remove empty programs from interleaving compositions of
programs.

It is important to understand exactly what is happening in the rules for
reducing interleaved compositions of programs. Since we are working with
an SOS, every actual reduction taken by a program (fragment) is the root
of a tree generated by applying the SOS rules to the configuration before
the reduction takes place. The root of the generated tree is the reduction
which is actually taken. In order to determine which reduction will actually
be performed, the tree also includes ‘explorations’ of reductions which are

44 A unified framework...

not actually taken (i.e. the less interesting reductions). It does this in
order to determine what is the actual level of interest associated with those
reductions. Therefore, we have a semantics wherein all components of an
interleaving composition are conceptually applied to the multiset to see how
interesting each reduction is and what the resulting configuration after each
reduction is. Once we know which of the possible reductions is the most
interesting, we keep the configuration resulting from that, most interesting,
reduction and discard the results of all other generated reductions.

In terms of semantics, this blatant inefficiency is not a problem: we are
simply exploring a space to see what we wish to do. In terms of an actual
implementation of a language, however, applying all interleaved programs
to the state and then throwing most of the results away is clearly a waste
of cycles. We would hope that compiler builders would address this issue.
On the other hand, the inefficiency is trivial as compared to the inefficiency
of searching for data in multisets in the first place, a point which we made
in 1.3.1 in connection with reducing the number of programs in an interleav-
ing composition.

The sequential composition rules Seq and Seq. are standard, except
that the label of the consequent of Seq is calculated from the label of the
antecedent using LI, which is the max function on labels (natural numbers).
The conditional rule If proceeds by applying the condition to the state and
using the results of that evaluation to determine how interesting the reduc-
tion is from the point of view of the condition itself. Rule If, like rule Seq,
calculates a label of its consequent using the max function. Rules If,, and
If., reduce conditionals with empty conditions into one of either two pro-
grams, depending on whether any previous reduction of the condition was at
least as interesting as cond. The rule for recursion (Rec) is also standard,
involving an unfolding of the recursive program [114]. It states that all the
free instances of X in P are replaced by puX.P. For the sake of brevity, we

sometimes write P* for pX.P g X:eand P D Q for P > Q :e

If the current state is L or A, only reductions which remove empty
programs are performed. This behaviour is evidenced by the presence of
o ¢ {1, A} in many of the rules of the SOS.

Rules If and Seq calculate the max function on a label and a parameter
(a member of the i-tuple). The intention is that the approach makes it
possible for reduction of a composed program to be more interesting than
reduction of its left-hand side. Such a treatment makes it possible to capture
formalisms wherein reduction of a program in a composition may be more
interesting than reduction of the same program outside a composition. Such
behaviour is typical of languages such as I' and CGP, as we shall see.

2.3 A posse of parallel languages

With our formal machinery in place, we can demonstrate the flexibility of
PT by giving a number of translations of parallel languages into PT. In each
translation, the properties of the reduction relation for that language are

...for parallel transformation. 45

S(BaAaU) = (0170270") S(BaA U) = (C17c27A)
(e1,c2) Appl (ec1,c2) App2
((B,A,8),0) "' (¢,0") ((B,A,S),0) " E5(B,A,S5), A)
it o , No it o
if 1, A "£A if 1,A
(P|Q,0) &3 (P,0) Chsy (P|Q,0) &= (Q,0) Chsw
ifog{L, A} ifog{Ll, A}
cq,C d,;,d
(Pl, >(1,C2) <P1,,U,> (PZ, >(1,d2) (PZ:) -
1
(c ca) (c c2)
(P|| P2yo) == (PL ||| P2yo’) & (P2 ||| Pryo) == (P2 ||| Pi,0)
ifdy; <czAsync<ex Ao ¢ {L,
(Pryo) (Pl (P 2 il Int
ntz
(c1,c2) (
(Py|| Po, o) "==2 (P ||| Poyo) & (P ||| Piyo) 2 (P, ||| Pf,0)
ifdy; <cz <syncAo ¢ {l,
cy,c d;,d
(Proo) B (PLo") (Pro) L (PO
nts
cildqy,c
(Py || P2y o) 222 (P || P4, 0)
if (cz =dz) <syncAo ¢ {L,A}
(0 o) (0,00)
(Pl e,0) = (P1,0) Int. (ell P2yo) =" (P2,0) Int.
(o) TR o
(Pi3P2, 0) CIET (pispy o) (3 P2,0) @) (P, 0) Seq,
ifod{L A}
(P, o) ‘222 (P! 5" .
n c c if nUc
(P Py: Ps,0) V8 (pr St py o py oY)
itog {L,A}
(B Py : Ps,0) 23 (P, 0) If,, (B Py : Ps,0) 23 (P, 0) If.,
if n > cond if n < cond

(uX.P, o) L= (P[uX.P/X], o) Rec
ifog{L A)

Figure 2.2: The SOS of PT. The family of one-step transition relations

‘(Clz’cf)’ on configurations is the least satisfying the above clauses. Notice

that & and 7 = (semi, cond, sync, if) are unspecified. Inty and Intz have
two consequents apiece. They are non-deterministic rules which can choose
either consequent if both are applicable.

46 A unified framework...

captured through an appropriate choice of selection functions, i-tuples and
encodings into the connectives of PT. More examples of the flexibility of PT
can be seen in Chapter 3.

231 T

' [20] was proposed as a model of parallel programming in which programs
can be written which contain a minimum of explicit control flow. It is de-
scribed in Chapter 1. The SOS of T is given there and in [65]. A possible
translation of I' into PT is given below. In Section 2.5, we will see that at
least one other (equivalent) translation is possible.

ir def (semi, cond, sync, if)

def [(succ,succ,o[Ad/5]) if 37 Co.B&
Sr(BA.0) = { (fail,fail,o) otherwise
where:

(0=if=fail)<sync<(semi=cond=succ)< oo

[[(B)A)F]] = (B7A>S]_—‘)*
[Poop 1] = [P]3[P]
[P+] = [A]II[P]

We can satisfy our intuitions that this translation behaves in the same
way as [' through examination of the parameters. Examining the translation,
we see that fail < (semi = succ). Therefore, reduction of the left-hand
side of a sequential composition P §Q(which has a level of interest of at least
semi) is as likely to be chosen, when it is offered, as successful application
of a primitive function (level of interest: succ). A failed application of a
primitive function is the least interesting kind of reduction and can there-
fore only be picked when all functions are inapplicable primitive functions.
Therefore, only if neither an applicable primitive function nor a sequential
composition is offered can an inapplicable primitive function be discarded.
Such a situation occurs only when the program contains nothing but inap-
plicable primitive functions. In such a case, all of the primitive functions are
thrown away synchronously. Those familiar with T' will recognise this be-
haviour. In Section 2.4 and 2.5, we give example executions of I' programs,
which highlight the curious properties of its interleaving operator.

Proposition 1 (Correctness of the translation) Our translation of T
into PT s correct.

Proof by induction over the structure of the transition relation. The
proof is to be found in Appendix A.1.
2.3.2 TI'*: I with loops and single-shot functions

As we said in the introduction, one of the weaknesses of the I' model arises
because of the restricted way in which recursion is made available. For

...for parallel transformation. 47

example, many of the applications which we have described in Chapters 4
and 5 require a more sophisticated treatment of recursion and single-shot
functions than those offered in I', in order to make feasible, applications
programming from a software engineering point of view. A good example
of this is an initialisation: the state is initialised once in the course of a
program’s execution. The initialising function should therefore be applied
exactly once. One-shot functions are not available in I', although they can
sometimes be simulated by clever use of tagging (but not always: see [127]).

PT offers us general recursion and primitive functions which are one-shot.
Using PT as a guide, we can extend I' so that arbitrary recursive programs
can be written. We define a new language I'*, so-called because it is related
to T', but makes recursion (the p-operator) explicit.

ipn def iT
[Pyope Pl S [P]3[R]
[P +re I S [P IIP]
Py € ey

P* loops on P, for any P. One-shot functions can be encoded in I'* by
merely omitting ‘*’ operators.

2.3.3 Calculus of Gamma Programs (CGP)

CGP [37] was proposed as an alternative to I'. CGP does not suffer from I'’s
curious property, within an interleaving composition of programs, of being
able to choose reduction of the inapplicable left-hand side of a sequential
composition when an applicable primitive function is also available. CGP
chooses to apply applicable primitive functions over all other kinds of pro-
grams. If no applicable primitive functions are available, then CGP will
reduce sequential compositions, synchronously if more than one is avail-
able. If no applicable primitive functions and no sequential compositions
are available (i.e. if the program is an interleaving composition of inapplica-
ble primitive functions), then the whole program is synchronously rewritten
to the empty program. Although CGP certainly does avoid the particular
property its creators disliked in I, it also has its own curiosities. These shall
be seen in Sections 2.5 and 2.4.

The SOS of CGP is given in [37] and below.

48 A unified framework...

I C M.Bm App, T CM.Bii
(B, A), M) = ((B, A), M[Arn /1)) (B,A),M) = M

App2

(P,M>:>(P’,N) Se (P,M>:>M
(QoP,M)= (Qo P\, N) -1t (Qo P, M) = (Q, M)

Seqz

(PMy=M (Q,M)=M
(P+Q,M)=M

Int1

(P, M) = (P,N)
(P+Q,M)= (P+Q,N) & (Q+P,M)=(Q+P,N)

Intz

(P,M) = (P, M) (QM)=(Q\M) P'#£P Q#Q
(P+Q,M)= (P'+Q', M) 2

(P,M) =M (Q,M)=(Q" M) Q #Q
(P+Q,M)=(P+Q' M) &(Q+P M) =(Q +P M)
CGP is translated into PT as follows:

OGP def (semi, cond, sync, if)

IIlt4

where:
(0=if=fail) <semi<sync<(cond=succ)<oo

[(B,A)cgp]l = (BASr)”
[Procgp 1] = [P]s[F]
[P +cgp P2l [P TP]

Proposition 2 (Correctness of the translation) Our translation of CGP
into PT is correct.

Proof by induction over the structure of the transition relation. The
proof is to be found in Appendix A.2.

CGP#: CGP with recursion and single-shot functions

The same weaknesses in the use of recursion that are present in I' are present
in CGP. We can easily define a new language, which we christen CGP#,
which exhibits the same context-sensitive and synchronisation behaviour as
CGP, but with one-shot functions and general recursion.

i def .

LCGP# = CGP
(B, Hogpr] (B, 4,8p)
[Pz ocgpr 1] def [P] 5[]
[P +ogps 2] S [P NIP

progery Py

...for parallel transformation. 49
CI': a CGP variant

We can define a variant of CGP in which successful function application
is favoured over reduction of a sequential composition. If no functions can
be successfully applied, then rewriting sequential compositions is performed
non-synchronously and in preference to rewriting primitive functions. Prim-
itive functions are rewritten synchronously, when none can be applied. CI'
is therefore identical to CGP except for its synchronisation behaviour.
icr dlef (0 = if =fail) < sync < semi
< (succ = cond) < co

We present examples of programs executed according to the CI' scheme
in Section 2.4 and Section 2.5. As with I' and CGP, we can easily define
CT#,

2.3.4 A context-sensitive Gamma (CSTI)

We define a new language called CST', whose interleaving composition favours
successful primitive function applications over all other kinds of reductions.
However, unlike I' and CGP, no synchronous rewriting of inapplicable pro-
grams occurs.

iCsT (0= if) < sync < (fail = semi)
< (succ = cond) < oo

We present examples of programs executed according to the CSI' scheme
in Section 2.4 and Section 2.5. CSI'* is defined straightforwardly in an
analogous manner to I'#.

2.3.5 A context-insensitive Gamma (CII")

We define a new language called CII', whose interleaving composition is
completely context insensitive. That is, it rewrites either of its arguments
without examining the other (as long as neither of its arguments are e:
rewriting empty programs always takes priority over other rewrites).
iCIT dlef (0 =if) < sync<
(fail = semi = succ = cond) < 0o

We present examples of programs executed according to the CII' scheme
in Section 2.4 and Section 2.5. As before, we can define a language CIT'#,
which offers recursion at arbitrary levels.

2.3.6 Alternative notions of resource consciousness 1:
state sets

We can ensure that the initial multiset is transformed as a set. That is,
multiple identical results are absorbed. If our initial multiset is a set, then
Sy ensures that it remains so throughout the computation.

50 A unified framework...

_ (succ,succ,0 U Ad) if 36 Co.B&
Su(B,4,0) = { (fail,fail,o) otherwise
2.3.7 Alternative notions of resource consciousness 2:
non-linearity

In [97], we observed that T' function application is linear in the sense of
Girard’s linear logic [60]. That is, multiset elements are consumed when a
function is applied to them. If multiple copies of an element are required,
then that element must be explicitly copied. However, using an alternative
selection function, we can remove this linearity constraint. Consider selection
function Sy. If we think in terms of a computation as a chemical reaction,
then Sr treats elements of the state as reagents, which are consumed in order
to create their reaction products. In contrast, Sy treats elements of the state
as catalysts, being unchanged themselves and yet precipitating change.

_ (succ,succ, 0 W Ad) if 36 Co.B&
Su(B, 4,0) = { (fail,fail,o) otherwise
2.3.8 AlChemy: chemical reactions modelled using A-
terms

An example model for whose encoding we can make use of the ‘catalytic’
reactions described above is AlChemy [51, 50, 52]. Alchemy was proposed
as an abstract model for studying the evolution of self-organising and auto-
catalytic chemical solutions. An introduction to AlChemy is given in Sec-
tion 1.2.7. We can easily build an AlChemy interpreter in PT, using the
following encoding;:

SAIChemy(B>4,0) = (suce,succ,0’)

where 3¢ C 0.BGA
N=ocWAFANo' CNA|o'|=|o]

L AlChemy = 0 =semi = fail = sync = if < succ
[alchemy interpreter] = (B, A4,S)*

where

B(z,y) = True

Az, y) = {zy}

S = SAIChemy

2.3.9 Abortion and deadlock

Primitive functions in I' and CGP cannot abort or deadlock. However, in
order to be as flexible as possible in the presence of aborting or deadlocking
software components, we should ensure that our coordination language han-
dles these situations gracefully. In this section, we give a few examples of S
functions and i-tuples which give rise to different behaviours in the presence
of aborting or deadlocking primitive functions.

...for parallel transformation. 51
Abortion

The following S function makes a primitive function abort if no sequence of
elements in the set satisfies B:

succ, succ,0 U Ac if 35 Co.B&

Sa(B,A,0) = { Efail,fail, 1)) otherwise

The behaviours of programs in interleaving compositions depend upon
the i-tuple we have. If succ > fail in the i-tuple, then non-aborting prim-
itive functions are chosen over aborting primitive functions. In other words,
non-abortion is favoured. This corresponds to angelic rewriting in the ter-
minology of [11]. If succ < fail in the i-tuple, then aborting primitive
functions are chosen over non-aborting primitive functions. In other words,
abortion is favoured. This corresponds to demonic rewriting in the terminol-
ogy of [11]. Action Systems features abortion-favouring primitive functions.

Deadlocking

The following S function makes a primitive function deadlock if no sequence
of elements in the set satisfies B:

succ, suce, 0 U AF if 35Co.B&
Sp(B,4,0) = { Efail,fail,A)) otherwise
Our choice of i-tuple determines the behaviours of interleaved programs,
as before. If succ > fail, then non-deadlocking primitive functions are
chosen over deadlocking primitive functions. Conversely, if succ < fail
in the i-tuple, then deadlocking primitive functions are chosen over non-
deadlocking primitive functions.

Combining deadlock and abortion

Using variants of the above two selection functions, we can encode a language
which features both aborting and deadlocking primitive functions:

_ (suce, succ,0 U Ad) if 3¢ Co.B&
Sw(B,4,0) = { (faily,faily, 1) otherwise

_ (succ, succ,0 U Ad) if 3¢ Co.Bd
Sp(B, 4,0) = { (fails, fails, A) otherwise

If succ > faily, > fail;, then successful rewrites are chosen over all
other rewrites and deadlocking rewrites are chosen over aborting rewrites.

2.4 Context sensitivity and interleaving choice

We compare four different versions of the interleaving operator: those of T',
CGP, CST'and CIT'. Figs. 2.3, 2.4 and 2.5 show the behaviours of the four

composition operators when reducing two programs.

52 A unified framework...

The figures display a stylised version of reduction and are meant to be
read from top to bottom. Each tree indicates all of the possible reduction
paths starting with some initial configuration. Initial and final configura-
tions of a particular reduction are indicated by, respectively, the left-hand
operand and right-hand operand of a ‘—’, appropriately oriented. Interme-
diate configurations containing € have been elided in the interests of brevity.
For each figure, we show the possible reduction paths generated using one-
shot functions and the parameters of the languages being compared. We
define the behaviours of a program P (written B(P)) as a set of pairs. Each
pair contains two multisets: the initial multiset and a final multiset which
can be generated from the initial multiset by program P. If a program can
generate several possible final multisets for a particular initial multiset, then
the behaviours of that program will contain a pair for every possible final
multiset. For example, the program P:

(B, A,8p) (B, A", Sp)

where Bz = True
Az = {1}
B'xz = True
Az = {2}

when applied to the multiset {0}, has behaviours:

B(P) 2 {({0}, {1}), ({0}, {21}

The behaviours of a program might well be different from those shown in
the figures below, if primitive functions are used which are implicitly recur-
sive (such as those in). However, we wish here to highlight the program
context-sensitive curiosities of the interleaving operators, which would still
exist even if all primitive functions were implicitly recursive. In the exam-
ples given, therefore, we use non-recursive primitive functions to keep the
diagrams manageable. As in Chapter 1, we use Pnm to indicate a primitive
function (Az.z = n,Az.{m}) (i.e. a primitive function that converts an n
into an m, if an n is found in the multiset).

A B :
((P123 P23) ||| P31,{3}) (P13 || P31,{3})
v N\ v ¢
(P23 || P31,{3}) (P125P23,{1}) (P31,{3})(P13,{1})
/ N ' i i
(P31i{3}><P23i{1}> <P23¢,{2}> (e,{1}) (&, {3})
(e,{1}) (e {1}) (e, {3})

Figure 2.3: Programs A and B, reduced in PT with CII"’s parameters. Note
that A and B yield the same behaviours.

...for parallel transformation. 53

A: B:
((P125 P23) ||| P31,{3}) (P13|| P31,{3})

(P23 || P31,{3}) (P125P23,{1}) (P13,{1})
} } }
<P23i{1}> <P23i{2}> (.{3})
(e,{1}) (e,{3})

Figure 2.4: Programs A and B, reduced in PT with ['’s parameters. Note
that A and B yield different behaviours, even though twos produced by P12
cannot be consumed by P31.

A B :
(P123P23) || P31,{3}) (P13||| P31,{3})
d

(P12 P23, {1}) (P13,{1})
1
<P23i{2}> (e,{3})
(e, {3})

Figure 2.5: Programs A and B, reduced in PT with CST' or CGP’s param-
eters. Note that A and B yield the same behaviours, as in the CII' scheme.

The figures illustrate that CII', CST' and CGP are well-behaved for pro-
grams A and B in the sense that they produce the same behaviours for
both programs A and B. This is certainly what we would expect from an
interleaving composition operator, as the intermediate results produced and
consumed by P12§P23 (namely twos) can be neither generated nor consumed
by P31. Therefore, we should be surprised if the fact that A takes twice as
many reductions as B to turn ones into threes influences the possible out-
comes of the computation. However, this is ezactly what happens for the
I" version, which seems to suggest that [' is badly-behaved in some sense.
The reason why, in I', the behaviours of program A differ from those of B
is that, in I, a reduction inside a sequential composition is just as interest-
ing as a successful application of a primitive function—as witnessed by the
fact that semi = succ in I'. Therefore, in an interleaving composition, we
can always choose to reduce inapplicable primitive functions in a sequential
composition, regardless of whether another component of the interleaving
composition is applicable. However, we cannot reduce inapplicable primi-
tive functions in an interleaving composition, unless no other reductions are
possible. We believe that this asymmetry between primitive functions and
sequentially composed functions should be considered curious at best.

54 A unified framework...

2.5 Synchronous and non-synchronous reduc-
tions

A synchronous reduction may occur when fail < sync. In such a case,
one or both operands of the interleaving operator are rewritten, without
altering the state. If succ < sync, then all interleaving compositions rewrite
to either a single primitive function or to the empty program without any
transformations being performed on the multiset. We regard this behaviour
as degenerate and do not examine it further.

We attempt to give the reader intuitions on the impact on a formalism
of choosing different synchronisation strategies, by taking the parameters
of a particular formalism and investigate the effects of altering sync. In
Figs. 2.6, 2.7, 2.8 and 2.9, we investigate the impact on the behaviours of
programs, using the parameters (except for sync) of, respectively, CIT, T,

CST" and CGP.

0 = sync: fail < sync < oo:
(P33 P12) ||| P23,{1}) ((P3135P12)||| P23,{1})
(P12 |||L1<23, {1}) (P31 1}12, {1} (P12,{1})
K R } {
(P23,{2})(P12,{1}) (P12,{1}) (e:{2})

} } }
(&{3h (& {2}) (,{2})

Figure 2.6: The reduction paths possible using CII"’s parameters. The two
approaches to synchronisation yield different behaviours, for this program.

0 = sync: fail < sync < semi :
(P31 P12) | P23,{1}) ((P313P12) || P23, {1})
(P123 P23, {1}) (P12]|| P23, {1})
I I
(P23,{2}) (P23,{2})
{ {
(,{3}) (,{3})
Figure 2.7: The reduction paths possible using I'’s parameters. The two

approaches to synchronisation yield the same behaviours, for this program.
The result is generalised to all programs in Section 2.5.1.

Notice that making I' FS (fail < sync) does not affect the behaviours
of the program, unlike for CSI' and CII'. We can justify this informally as
follows:

...for parallel transformation. 55

0 < sync < fail: fail < sync < succ:
(P35 P12) || P23,{1}) ((P3L§P12) || P23,{1})
e hY }
(P12]| P23,{1}) (P315P12,{1}) (P12,{1})
+
(P23,{2}) (P12,{1}) (e,{2})

!
(e.{3}) (e.{2})

Figure 2.8: The reduction paths possible using CSI'’s parameters. The two
approaches to synchronisation yield different behaviours, for this program.

(0 = sync) < fail: semi < sync < succ:
((P413 P12) ||| (P23 P24),{1}) ((P413 P12) || (P23 3 P24),{1})
(P12 || (P23 3 P24),{1}) &{Pzﬂ s P12) || P24,{1}) (P12 P24,{1})

(P233 §24, 2}) (P12 ||| P24,{1}) (P24,{2})
<P24¢,{4}> <P24¢,{2}> (e, {4})

} }
(e,{3}) (e,{4})

Figure 2.9: The reduction paths possible using CGP’s parameters. The two
approaches to synchronisation yield different behaviours, for this program.

Because fail < (semi = succ) in T', then the only occasion on which
all the programs in an interleaving composition yield fail is when all of
them are simple (i.e. do not include sequential composition [65]) and none
of them can be successfully applied to the multiset. In such a case, it makes
no difference whether the primitive functions are reduced synchronously,
because applying them in any order or all at once will not change the multiset
or make one of the other primitive functions applicable.

The argument can be made formal by a straightforward induction.

In contrast, CSI" and CIT" can behave differently when augmented with
synchronisation on failure. CGP favours (synchronised) reductions of se-
quentially composed programs over (synchronised) reductions of primitive
functions. CSI' does not favour reductions of sequentially-composed pro-
grams over reductions of primitive functions.

2.5.1 Some results linking I', ', CGP and CGP*

We conclude this section by giving a number of results linking the transla-

tions of I', I'*, CGP and CGP*.

56 A unified framework...

Proposition 3 All T’ programs can be translated into T'*.

Proof: Consider the following translation of I' into I'*:

[(B,Ar] = (B, A«
[Q o P] [Q] opu [P]
[P+r Q] = [P]+rx(Q]

This translation is sound. Proof by induction over the structure of the
programs. The proof relies upon the fact that co > (succ U fail LI semi),
After a successful or unsuccessful application of the translation of a prim-

itive function (B, A), that translation is always of the form e > (B, A)*.

Therefore, PT always makes the transition (P, M) (Oiog)pT (P', M), which

either regenerates the primitive function (if the application was successful)
or discards it (if the application was unsuccessful). O

Proposition 4 All CGP programs can be written in CGP".

Proof: Consider the following translation of CGP into CGP#:

[Qeocap Pl [Q] ecpw [P]
[P+cgp @l = [P]+cgp- (€]

This translation is sound. Proof by induction over the structure of the
programs. O

Proposition 5 Simple [65] programs have the same set of behaviours in [’
and CGP.

Proof: Simple inductive proof on the structure of the programs. The
proof hinges on the fact that the only difference between iy and iggp is
in the relative values of semi. Therefore, we can easily show that programs
which do not include sequential composition must generate the same sets of
behaviours. O

Proposition 6 There is a program which is both a T'* program and a CGP*
program, but neither a I' nor a CGP program.

Proof: Consider the following program schema. For all A,
(True, A)

Such programs can be applied once to the empty multiset and then ter-
minate, yielding a multiset A. Such programs cannot be written in I" [127] or
in CGP. They contain no sequential composition or interleaving operators.
The parameters for the interleaving and sequential composition operators
are the only places in which I'* and CGP* differ. Therefore, the behaviours
of these programs will be identical in I'* and in CGP#. O

...for parallel transformation. 57

<

%

Figure 2.10: A comparison between I', CGP, ['* and CGP*. Set intersection
indicates the existence of programs which are both syntactically identical and
have the same behaviours when reduced in each formalism.

Proposition 7 There is no program which is both a I'* and a CGP program
but not a I' program.

Proof (by contradiction): Assume that there is such a program P. As P
is a I'* program but not a I' program, it must either (i) contain no recursion
or (ii) contain sequential composition within the scope of recursion. If (i),
then P is not a CGP program, because CGP (like I') has recursive primitive
functions. If (ii), then it cannot be a CGP program because sequential
composition in CGP behaves differently to sequential composition in I'. So
either way, the program is not a CGP program. O

Proposition 8 There is no program which is both a CGP" and a I program
but not a CGP program.

Proof: Almost identical to that of proposition 7. O

The results established above enable us to present the diagram in Fig. 2.10,
which relates I', I'*#, CGP and CGP*.

2.6 A taxonomy of I'-like languages

We have described a number of multiset transformation languages in terms of
the levels of interest which they associate with different reductions. A graph-
ical representation of the i-tuples associated with each language is shown in
Fig. 2.11. The explanation for the double appearance of I' is given in Sec-
tion 2.5.

2.7 Fairness

The languages for which translations have been given here make no fairness
assumptions. Adding to PT either a fairness assumption or a random as-
signment statement would render possible sound translations of languages

58 A unified framework...

semi < succ fail < semi

fail < sync
semi < sync
fail < semi < succ

Figure 2.11: A taxonomy of multiset transformation languages. The diagram
is formed by classifying according to the relationships between members
of the i-tuple of each language discussed in this chapter. Set intersection
indicates the existence of programs which are both syntactically identical
and have the same behaviours when reduced in each formalism. We omit
references to cond in our classification as all our examples make cond = succ.
All of the languages discussed use selection function Spr. The ‘i’ versions
of the languages are to be found at the same places in the diagram as their
‘non-p’ counterparts. The explanation for I'’s double appearance is given in
Section 2.5. The empty set intersections are explained in the text.

requiring fairness [4]. Examples of such languages include UNITY and Ac-
tion Systems, both of which were described in Chapter 1. We leave such
investigations to future work.

2.8 Future work

The work here presented constitutes the first steps in an analysis of lan-
guages for parallel programming. We should extend our range of examples
by attempting to translate more formalisms into PT. We should also in-
vestigate the possibility of including a truly parallel composition operator
in PT. Our interleaving operator can perform synchronous reductions, but
only by throwing away the results of the computations performed by both
its operands. We plan to investigate ways of encoding state splitting and
recombination which could allow non-degenerate reductions to occur in lock-
step. Furthermore, adding to PT either a fairness assumption or a random
assignment statement would render possible sound translations of languages

...for parallel transformation. 59

requiring fairness [4]. We should also investigate the properties of PT inde-
pendently of the parameters which might be chosen, thereby attempting a
work in the spirit of that undertaken in [65] for T'.

Currently, PT contains two forms of conditional. One hides in the selec-
tion function and evaluates the predicate B from a primitive function. The

other lives in programs in the form (P > Q@ : R). This is inelegant. The ideal
solution would be to find a way of allowing only a single form of conditional.
However, our efforts in this direction have so far proved unfruitful.

Finally, no multiset transformation languages are known or suggested
which fit into the blanks in Fig 2.11. We will have to wait for future work to
tell us whether the denizens of these places are languages worthy of study
in their own right.

2.9 Conclusions

We have offered PT, a generalised and parameterisable operational seman-
tics for parallel programming. Instantiating the semantics in different ways
results in different languages.

We have used PT to discuss the (dis-) similarities between a number of
multiset transformation languages which differ in the ways in which they
handle interleaving compositions of functions. Some of the languages com-
pared existed before PT (I' and CGP), while others have been proposed
as a result of examinations of the parameters used in the encodings of T’
and CGP(e.g. CI', CI' and CSI'). Our encodings delivered insights into
the context-sensitivity of different interleaving compositions and suggested
weaknesses in [’s and in CGP’s semantics.

We believe that the amenability of our semantics as a target language
for translation demonstrates the utility of quantifying the level of interest
associated with different reductions. Another example of the utility of our
approach can be seen when we consider that Ciancarini et. al. claimed
that I' lacked the context-sensitive reduction property because of the way in
which the interleaving composition was defined [37]. We have shown that
making semi = fail effectively redefines sequential composition by remov-
ing the ‘LI’ function on flags and makes a CS variant of I'. Therefore, a CS
version of I’ can be defined either (such as in Ciancarini’s treatment) by re-
defining the interleaving composition or (in our treatment) by defining a new
sequential composition operator for I', whose reductions are less interesting
to interleaving composition.

Finally, both I' and CGP mix properties of context-sensitive reduction
and synchronisation on failure. We believe that our analysis of both of these
properties in terms of PT shows that there is some mileage to be gained by
explicitly separating the two issues.

60

A unified framework...

Chapter 3

State synchronisation and
data contexts: the road to
L is paved with good

extensions!

In this chapter, we capture synchronisation and data contexts in PT, the
model for parallel reduction introduced in the previous chapter. Data con-
texts allow us access to tuples’ values without having to remove them from
the multiset. Synchronisation control allows us to specify when changes to
the multiset are ‘fixed” and therefore made visible to the program. Alone
or in combination, these properties allow us to write multiset transforma-
tion (MST) programs which behave in a greater variety of ways than those
previously possible. Although excluded from our earlier analyses, these two
extensions are needed for a flexible and applicable parallel reduction sys-
tem: many physical and biological systems exist whose reduction possesses
these properties. Examples include Lindenmayer systems (L-systems) and
cellular automata (CAs). We show how to capture, in PT, state synchroni-
sation, data context properties and their combination, giving a number of
motivating examples.

3.1 Introduction

In Chapter 2, we described PT, a unified theoretical framework for ‘parallel’
state transformations. The main feature of the model is the presence of
parameters, the substitution for which enforces certain constraints on the
dynamics of reduction. Substituting different parameters allows (features
of) different languages to be encoded. PT is therefore a tool for comparing

IThis chapter represents joint work with Professor Przemyslaw Prusinkiewicz of the
University of Calgary, Alberta, Canada. I would like gratefully to acknowledge the NWO,
whose grant SIR 12-2643 partially supported me during my visit to Canada.

61

62 State synchronisation and data contexts...

a number of extant formalisms within a single framework. This enables
us to study the effects of different control-flow operators either alone or in
combination, without having to compare complete alternative languages.

Despite the triumphs of Chapter 2 in clarifying program context-sensitive
interleaving operators, no explicitly parallel operators were examined. While
interleaving is often considered an adequate approach to theoretical treat-
ments of parallelism, we were motivated to attempt to encapsulate, in PT,
true parallel operators, whether prescriptive (you must reduce in parallel
if you can) or non-prescriptive (you may reduce in parallel if you can). In
particular, we wished to encode, in a straightforward way, the prescriptive,
synchronised, (data) context-sensitive parallel reduction of systems such as
Lindenmayer systems [91] and Cellular Automata [145]. In such systems,
all elements of the state (usually array elements) are updated logically syn-
chronously, using the values of (some of) their nearest neighbours to calculate
their next state. Such systems are described in Chapter 1. As we demon-
strate in Chapter 5, these systems can be encoded in MSTs with interleaving
operators, but the encoding is awkward. Specifically, it is difficult to syn-
chronise the reductions so that all members of one generation are updated
before any members of the next generation. This problem is particularly
acute when elements need to observe the values of other elements, which
are not to be removed from the multiset. Such elements we refer to as data
context. For example, if reductions are logically in parallel, elements can be
both removed and examined as data context logically simultaneously (See
Figure 3.1). In this chapter, we explore encodings of data context-sensitivity
and of state synchronisation in isolation and, finally, encode the combina-
tion of these two properties. To show that our new formalism (viz. a data
context-sensitive reduction system with explicit state synchronisations) is
a strict extension of those formalisms studied in Chapter 2, we prove that
[[65] can be correctly translated into the combined formalism, with the
appropriate choice of i-tuple. Throughout, our exposition is aided by exam-
ples.

This chapter is structured as follows. In Section 3.2, we introduce data
contexts to PT. In Section 3.3, we introduce state synchronisation to PT, fol-
lowed in Section 3.4 by examples of prescriptive and non-prescriptive parallel
operators, captured using our mechanism. In Section 3.5, we combine data
contexts and synchronisation and show the advantages of such a combina-
tion. In Section 3.6, we give a translation of I' into the combined formalism.
On the basis of our experiences in the last two chapters, we introduce the
language Goblin, a multiset transformation language (MSTL) containing ex-
plicit state synchronisations and data contexts and suffering from none of the
compositionality problems of " [17] or CGP [37], which were described in the
previous chapter. Finally, we indicate possible avenues for future research
and draw our conclusions.

...we’re on a highway to L. 63

Figure 3.1: Two reductions, with overlapping data contexts which
can be performed in parallel. The contextual arguments are shown
as light grey; the non-contextual arguments as white. Arrows
indicate which contextual elements are associated with each non-
contextual element. Rewrites are written as arrows from multiset
to multiset.

3.2 Data contexts in PT

Most MSTLs (e.g. T [20], CGP [37], CT" [96]) remove a primitive function’s
arguments from the multiset when that function is successfully applied to
the state (i.e. its predicate evaluates to true). We frequently find that our
programs are somewhat lengthened by this restriction: in particular, we are
sometimes forced to remove elements from the multiset then replace them,
unchanged, just so that we can see their values [98]. This is awkward and
is prone to encourage programmer errors. Contrast this state of affairs with
that of Linda [58], which allows one to read the value of a datum in the tuple
space, without removing it. The values of these contextual elements can be
used to calculate the results of a function application. Our earlier work on
PT [96] did not include any encoding of data contexts, but they can be
encoded straightforwardly, by choosing the appropriate selection functions
(selection functions are explained in Chapter 2). We give an example of such
a selection function:

dof (succy, succsy, o[A(F1,82)/d4])
Sc(B,A,0) = if 361 C 0.30% C (0 — 01).B(01,03)
(faily,failsy, o) otherwise

Selection function S¢ states that, when a primitive function is applied, we
remove two disjoint subsets from the multiset. Condition B checks the values
of both sequenced subsets, but action A only replaces the non-contextual ele-
ments of the multiset. Therefore, the contextual elements remain, undeleted
and unchanged, in the multiset.

With the availability of data context comes the possibility of writing
programs which perform the same function in different ways, depending

64 State synchronisation and data contexts...

upon whether they make use of data context or not. Consider these two
versions of a maximum function on multisets (the example comes originally
from [16]). In what follows, we write:

(B(Z,7), A(Z,)

For a (nameless) primitive function whose B and A take arguments & and
data context i. We write () for the empty argument list or empty context.

maxp dlef (B, A)
where
B((z,y),()) = =<y
A((z,9),0) = {«}
max, dlef (B, A)
where
B((z),(y)) = =<y
A(z),(y) = 0

The behaviour of programs depends upon the relative values of the labels
in the selection function and of those labels given as parameters to PT’s SOS.
The way in which this control is exerted is explained in Chapter 2. Assuming
that (fail, = fail, = sync = if) < (succ; = succ, = cond), then it is
easy to demonstrate that (max?*, M) and (max?*, M) yield the same results,
for all multisets M.

In the above example, the number of arguments which must be removed
from the multiset is one in the case of max. and two in the case of max,,.
Therefore, for max., a copy of the whole multiset can be given as data
context to each process, together with that element which the process is
supposed to rewrite. As there are n elements which are to be rewritten, and
as only one (plus the data context) is required at each process, n processes
can reduce in parallel. For max,, two elements (and no data context) are
required at each process before a comparison can be performed. Therefore,
we should expect the maximum possible parallelism for max,, (respectively
max.) to be n/2 (respectively n) for a multiset of cardinality n. If this is
indeed the case in general, then we have another strong motivation for using
data contexts, where this is possible. Unfortunately, in the absence of proper
experimental evaluation, we cannot yet claim that data contexts can make
implementations of a multiset transformation language more efficient. We
leave this avenue for future research.

3.3 Synchronous state update in PT

Now that we have shown how to encode data contexts in PT, we turn to the
second of our tasks, to encode different state update policies. State update
can occur after every primitive function application, or after a number of
primitive function applications. If it occurs after each primitive function

...we’re on a highway to L. 65

application, then an interleaving operator will perform state updates in an
interleaving fashion. If state synchronisation occurs after a number of prim-
itive function applications, then an interleaving operator can behave as a
truly parallel operator. Examples will be given in due course. At first, we
encode different state update policies without the presence of data contexts.
Later, in Section 3.5, we combine state synchronisation and data context
sensitivity.

The semantics of I'’s selection function implies that a successful function
application alters the state immediately. Furthermore, I offers an interleav-
ing program composition [65] but no truly parallel program composition.
Therefore, if logically parallel reductions are desired, an implementation will
have to determine when it is safe to do these. As PT was originally designed
as a extension of I', PT also makes it impossible explicitly to express logically
simultaneous state updates.

Although interleaving composition is often used as a model of paral-
lelism [110, page 48] and [114, page 36], there are situations wherein it is
not a good model. We give examples in Section 3.5. If we wish to be able
easily to encode these examples, we must capture the behaviour of a true
parallel operator in PT. Both components of a true parallel operator can
update the state logically simultaneously. Some parallel operators are also
prescriptive, in that they demand that reductions which can be performed in
parallel must be performed in parallel. Non-prescriptive parallel operators
make it possible that reductions which can be performed in parallel are not
so performed.

We claim that the essential difference between a parallel operator and
an interleaving operator is in the synchronisation of state updates: when
state updates happen after every function application, then reductions are
logically interleaved: if state update occurs after a number of function ap-
plications, then reductions are logically in parallel. We should expect, then,
that we can capture a parallel operator in PT by separating the state update
(‘fixing’ the latest changes to the state) from primitive function application.
This is, in fact, what we do, using the selection functions below:

def (sucey,succy,(0—01,pW A(01))) if o1 Co.B(071)
Ss1(B,A,(0p)) = { (fail,fail,(o,p)) otherwise

SS2 (BaAv(Uap))d:ef (fail,succ3,(U&Jp,@))

In each function, states are represented as pairs of multisets, the left-hand
of which represents the available arguments and the right-hand of which
represents the results of previous function applications. When a program
terminates, we regard the left-hand multiset as the result of the computation.
Ss1 states that primitive functions search for elements with the required
properties in the left-hand multiset (the argument multiset). If such elements
are found, then they are removed from the left-hand set and the action
function A is applied to them. The resulting multiset is combined using
a multiset union with the right-hand side multiset (the result multiset).
Selection function Sgo merely adds all of the elements of the right-hand

66 State synchronisation and data contexts...

multiset to the left-hand multiset and empties the right-hand multiset. The
effect of this is a state synchronisation: all of the changes made to the right-
hand multiset are ‘fixed’ in the left-hand multiset and can therefore be used
as function arguments for future primitive functions.

Using Sgo, defined above, we can define a synchronisation function s as
follows, for any B, A:

s def (B, A, Ss»)

The synchronisation function is a primitive function and can therefore
be used in a program just like any other primitive function. The form of this
function is somewhat confusing, for historical reasons®. PT was introduced
with primitive functions having the syntax (B, A, S), for some B, A,S (see
Chapter 2). In other words, all primitive functions possess a predicate (B)
and an action function (A4), as well as a selection function (S). However, our
synchronisation function s requires neither B nor A, which can therefore be
instantiated in any way we please without altering s’s behaviours.

Encoding state synchronisation using an explicit primitive function gives
to the programmer the ability to state when, precisely, state updates take
place. This, in turn, enables her to write programs which exhibit a wide
variety of behaviours. For example, by placing a synchronisation function
after every primitive function application, the programmer can force a I'-
like behaviour in which every function result is ‘immediately’ placed back
into the (argument) multiset. On the other hand, she can ensure a logically
maximally parallel execution by postponing synchronisation until after all
possible reductions have been performed on the original multiset. Further-
more, we can capture a hybrid, a non-prescriptive parallel operator, similar
to that in Schedules [36], wherein multiple reductions may be performed
before a state update. We illustrate each of these claims, with examples,
below.

Examples of synchronous and non-synchronous reductions

To give the reader a concrete example of the effect of synchronisation on
multiset rewriting, consider the following examples. Both examples make
use of the function (+1), which is defined below. The i-tuple which is used
by both examples is also given below (i-tuples are explained in Chapter 2):

(+1) d:ef (B7A>SSI)
where
B((z),()) = True

A((=),0) {z+1}

def 211, = fail, = sync
y

< (succy = succy = semi)
< succsg

...we’re on a highway to L. 67

—~
—~
~ —
- =
A ~
AN
-
— o
P
— ~—
n -~
oo\—>* —
—~ — [0
—~— + oo~
~— —~~
=~ & = =
= - S 9] +
N —~ ~ UA ~—
—-~— — f"‘ﬁ/‘ﬂ —
™ = [N} n ~
- ~— - 0
i *" i ~
~— n ~—
*'_> oo~ *
2] 2]
i
oo~ + oo~ N
— — -~ __
™ ~ v—i\ o iy
g =S
~— UA ~— — —~—
~ 3 ~ o
0 ~— -~
w0 -~ L]
~ % -
= ~—
oos_)*“_)
i 2]
+ oo~
~— i
9}
UA v_'_
= ~
n
n
~
—~
—~
(9]
—
« —_
—~ ~ —~ o _
— — ~—~~)
= = & o
u ~ —~
—~— ~ - IS
— * [\l >
- = = o
- o = PR
~ N o~ ——
N - S 7 ~
¥ —> ™ =% = oco—> ~—>
— —+ — * *
2] 2] —~ ~~
oo~ ~ oo~ — 2
* 18} * —+ oo
—~ (%) —~ —_ *
— 3A = ~
+ b + v i
~— [79) ~— UA +
~ oo~ ~ =] N
~ % ~ 0 ~
—~~
— z
=
~

Figure 3.2: The possible reductions of (+1), under different state synchroni-
sation strategies. The left-hand example synchronises the state only when all
possible function applications have been performed. The right-hand example
synchronises the state after every primitive function application.

68 State synchronisation and data contexts...

The possible reductions, for a particular initial multiset, are shown in
Figure 3.2. On the left-hand side, synchronisation occurs only when the
function has been applied to the multiset as many times as possible. On
the right-hand side, the state is synchronised after every primitive function
application. The difference between the two examples is clear: the left-hand
side’s state synchronisations (updates) occur in lockstep, resulting in syn-
chronous increases of all the multiset’s elements. On the right-hand side, the
behaviour is much less regular, with some multiset elements being updated
repeatedly while others are untouched.

3.4 Encoding parallel operators

PT contains no true parallel operator: the closest that we have is an inter-
leaving operator. However, using the notion of state synchronisation, we can
encode different kinds of logically parallel operator into PT. The differences
between the operators result from varying either the relative values of the
elements of the i-tuple, or by offering different encodings of primitive func-
tions (or both). In this section, we offer several different parallel operators,
with examples.

3.4.1 A non-prescriptive parallel operator

When more than one reduction is possible, a non-prescriptive parallel oper-
ator may behave like an interleaving operator or like a true parallel opera-
tor. A good example of a non-prescriptive parallel operator can be found
in Chaudron’s Schedules language [36]. To make our interleaving operator
behave in this fashion, we can use Sg; and Ss» and make succy = succs in
1. In other words, a synchronisation under Sgo is no more interesting than a
successful application of a primitive function. Therefore, when both a syn-
chronisation and a (successful) primitive function application are offered in
an interleaving composition, either can be chosen.

In what follows, we write P12 for a primitive function which turns a 1
into a 2 and P{1,2}4 for a primitive function which turns either a 1 or a 2
into a 4. Figure 3.3, gives an example of a non-prescriptive parallel operator.
Some intermediate reduction steps are omitted for reasons of space.

3.4.2 A prescriptive parallel operator

A prescriptive parallel operator must reduce programs in parallel, if it can.
The following definition of a I'-like language ensures that all the functions
offered in parallel are applied as many times as possible to the state before
a synchronisation is allowed to occur. We use Sg; and Sgo as our selection
functions.

2Thus is born legacy theory.

3
((0 Aﬂms 9) ((0 Aﬂ% 9) ((0 Aﬂ% 9) ((0 Aﬂ% 9)
A@,@r..uum_am___*mﬁmv ﬁ%@wmmE___.:SAsmmv (p{e‘ep) A:a,h@r..SAﬁ_am___*mNEv A@:@xmmE___.:SAﬁmv
N v 0 N v
((0'fe'n) ‘Lse1dlll .ST1d) ((e'g'o) sl s) (0D ‘wserdlll .sTTd)
N N N N
(({e}{1}) ‘.setd 3 sllhsera) (e} {1h ‘.serd |l .seTd 309
N Ve

i ({11} “.serd lll .se1d)
~
8
>
£
20
=)
M
g
E

Figure 3.3: An example of a non-prescriptive, logically parallel composi-
tion of two functions. The state can be updated (synchronised) after every

primitive function application or after a number of such applications.

70 State synchronisation and data contexts...

(B, 9] % ((B,4,50)" 35)"
LR To = 7 FY (2]
Pl rrrel

In Figure 3.4, we give the possible reductions, for a particular initial set,
when (fail = sync) < (cond = succ; = succe = succs = semi). We write
PzyS* for (Pzy* §s)*. Some reduction steps have been omitted.

Prescriptive parallel operators are unable to exhibit some of the be-
haviours of non-prescriptive operators. Consider the following example.
Again, some steps are omitted.

(((P12755)" |l (P{Lf}‘l)* 3s)% ({1,1},0))
(((P12755)" |l (P{Lf}‘l)* 39)% ({1}, {2})

(((P12755)" |l (P{l,f}‘l)* 55)", (0,{2,2}))

(s > (P12 39)" || (P{i,2}4)*88)*, (0,{2,2}))
(((P1275)" |l (P{l,f}‘l)* 5s)", ({2,2},0))
(e, ({2,2},0))

It is never possible for P{1,2}4 to reduce, because synchronisation can
only occur when neither composed program can do anything more. P12 can
continue to reduce until all the ones are consumed, by which point P{12}4
can do nothing.

3.5 Combining state synchronisation and data
contexts

In previous sections, we introduced encodings which capture data contexts
and state synchronisation in PT. In this section, we examine their combi-
nation, in two new selection functions. We notice that adding data context
to multiset transformation in combination with synchronisation makes cer-
tain results, possible under a truly parallel composition, impossible under
an interleaving composition. Therefore, in the presence of data context and
state synchronisation, interleaving composition of functions is not the same
as parallel composition of functions. So while interleaving is fine as a model
of (non-prescriptive) parallelism when no data context is present, it fails as a
model of parallelism when data context is present: it synchronises the state
too often to maintain correctly the data context.

We show the advantage of our approach over a truly parallel operator,
where both composed programs reduce simultaneously. In particular, we

71

...we’re on a highway to L.

((p*{e‘e}) =)

_r
((fe'eto) *wmiumam___ .S21d_ <)
(({e‘et p) ‘wserd |l wSTI)
N

(({e} 1)) ‘wsera |l wSTT1a)

((0'{eeh) =)

\ﬁ
ﬁmﬁ%svwmmiumﬂ%___ *wNESAs%v
\ﬁ
(({ect o) ‘wserd lll «ST1d)

a N
N N

(@411} wserd Il «STTd)

((p*{z T} =)

_r
((fe'dt o) *mmiuﬂam___ .S21d_ <)
({z‘ztp) w%i Il .S21d)

(({z} {1}) ‘wse1d |l «STI)

The state is updated

Figure 3.4: An example of a prescriptive, logically parallel composition of

two functions with each other and with themselves.
(synchronised) only after all possible primitive functions have been applied.

72 State synchronisation and data contexts...

show that encoding parallelism as interleaving plus explicit state synchroni-
sation plus data contexts does not enforce a strict separation of the states
of two programs which are reduced logically simultaneously. Instead, the
data context required by one program may overlap with that required by
the other program. In practice, implementations of L-systems [91, 115], cel-
lular automata [145] and many other scientific applications require precisely
this kind of overlap between distributed sub-states to realise their logically
parallel reductions. This in itself makes a formal model of logically parallel
reduction with overlapping states a desirable goal.

One of the advantages of our approach is that it does not require that a
program be explicitly written as reducing in parallel with itself in order to
be so reduced. If state synchronisation happens after a recursive program
has been performed n times, the result is the same as if the program had
been reduced n times in parallel with itself.

Combining state synchronisation and data context-sensitivity is not en-
tirely straightforward. First of all, consider a naive combination, thus:

dof (succy, suces, (0 — 01, p W A(0d1, p1)))
SSCI (Ba A) (0) p)) = if E'O'_i - o, Eip_i - (,0 - U_i)~B(U_i: P_i)
(faily,fails, (o, p)) otherwise

Ssc2(B, A, (o, p)) dlef (faily,succs + 1, (0 Wp, 0))

We define a new synchronisation function s’ as follows, making use of
Ssca, defined above. For any B, A:

s 4 (B, 4, S500)

We give an example for which the i-tuple is (fail; = fail, = sync =
if) < (succ; = succy = cond). Imagine that our primitive function is the

following, and that our initial multiset is: {11, 12}.

def

R = (B, A,Ssc1)
where
B((z),(y)) = (z>10)A(y > 10)

A((2), ()

{z — 10}

Now, we should ezpect the following, because 11 can be used as context
for 12 and wvice versa.

((R* 9 SI)*: ({11) 12}7 ®)> :>;3T <67 ({1) 2}7 ®)>

However, this simple combination of the encodings for context and for
synchronisation yields the following derivation tree (some steps are omitted):

...we’re on a highway to L. 73

((R* gs")*, &{11, 12}, 0))
(R*3+') & (R* sf’)*, ({11,12},0))

(RS R 3¢) B (R 38)%, ({11,12},0))

suce, < huce,

() "5 (5 (120, 00 ((R5) 75 ()", (G21)£21)
N) N T 2D)
(G 32,121, (G 32,1121
(R 35) & (B° L (210) (@) S (& 1 (11.2).9)
B @m0 @ B @ e (12,0

i \
(e, ({12,1},0)) (e, ({11,2},0))

But now, neither can 12 be rewritten to 2 nor can 11 be rewritten to 1,
so it is impossible for us to obtain the desired result. Our difficulty arises
because of the interaction between synchronisation and data context. When
we rewrite a number of elements of the state logically in parallel, we want
those elements to remain in the state as data context, in case they are needed
for other rewrites before a synchronisation occurs. We wish, therefore, that
the data context be initialised when a state synchronisation occurs and be
left untouched between state synchronisations. We therefore suggest the
following two selection functions:

dof (succy, succy, (0 — 01, p, 7 W A(d1, p1)))
Sc1(B, A, (0,p,7)) = if 301 C 0,3p1 C (p — 01).B(01, 1)
(faily, fails, (o, p,7)) otherwise

Sao2(B, A, (o,p,7)) clef (fails, succs, (c W7, oW, 0))

Now our state is a triple of multisets. The first element is the old
state, the second is the data context and the third is the new state which
is currently under construction. Note that any context examined cannot
overlap with the elements which will be removed from the multiset (as
3p1 C (p — &1)). With our state being a triple of multisets, we have to
redefine our state synchronisation function to correspond to the new form of
the state. For any B, A;

 def (B, A, Sas)

We define:

74 State synchronisation and data contexts...

def

i¢ = (fail; =fail, = fails = sync = if = semi)
< (succ; = succy = succy = cond)

Now we get the behaviours that we want, as demonstrated in Figure 3.5.
Our context elements stay unchanged until a state synchronisation takes
place. This means that, even if a particular element has been removed from
the argument multiset, its ‘shadow’ remains behind it in the data context
multiset. Therefore, a number of data context-sensitive reductions followed
by a synchronisation really do behave as if they were in a truly parallel
composition, rather than performed in an interleaved fashion. Furthermore,
a primitive function which is applied a number of times to the multiset before
a state synchronisation occurs is reduced, in effect, in parallel with itself.

Making this last explicit clarifies an issue which seems to this author to
be somewhat muddied in the T literature. The ability of functions to reduce
in parallel (with themselves) has been claimed to be a property of ', but
was never explicitly stated in the semantics, which describes an interleaving
composition of (different) functions but only allows a primitive function to
be applied once at each step. This in itself is a perfectly acceptable definition
of interleaving, which could be used to prove that, for example, functions
can be applied in parallel with themselves. Unfortunately, the argument is
not so constructed, leading to initial confusion among (this member of) the
audience. Consider the following statement, from [19, page 4]. Essentially
the same quote appears in [65, page 343]. The discussion concerns a defini-
tion of a primitive function (R, A), which determines the maximal element
of a multiset.

Nothing is said in this definition about the order of evaluation
of the comparisons; if several disjoint pairs of elements satisfy
property R, the comparisons and replacements can even be done
in parallel.

This is true, in I, but is not explicit in the semantics. In fact, partitioning
the multiset and applying two copies of the same function to disjoint subsets
of the multiset appears to be a de facto violation of the rule for primitive
function application, which applies a single primitive function atomically to
the whole multiset (although the function might only be able to examine a
part of it). The property in question can, in fact, be proved, but the fact
that it needs to be proved is not stated.

To understand the practical applications of our new approach, consider a
one-dimensional cellular automaton (CA) with neighbourhood one. CAs are
explained in Chapter 1 and in [145]. At every reduction step, all elements of
the array are rewritten. The new value of each array element is calculated
from the current value of that element and of the old cells’ neighbours.
Figure 3.6 shows a possible execution of a one-dimensional CA in schematic
form. Figure 3.7 shows the execution of a CA, executing with Wolfram’s
rule 90 [145, page 17]. Clearly, the same production rule can be applied

75

((0{ imm ‘1}) 9)
((0{z 1tz 1h) (i ¢.2)

\—/
(fetH{er ko) “Gs.) g i)
\—/
(({e'rfer b Ge.a) 2 (i6.30))
a N
({ey et W0 g GeGar, g o)) ({rd{ertriferh) W) g st 2 2)
N

\
(i (a1 g)))

°oA

((p{zranr et ar}) .G .a)
\ﬁl

((pfer T} Her1h) WG o) 2 Gs.a)

\ﬁ
((p{erarr {er ar}) L (i ¢)

..we’re on a highway to L.

Figure 3.5: Logically parallel, data context-sensitive reductions.

76 State synchronisation and data contexts...

many different times to different elements during a single iteration of the
automaton (i.e. before a state synchronisation occurs). Therefore, functions
(the production rules) are effectively being applied logically in parallel with
themselves and with each other.

\ A A
A A
(TTTTITTTT]
e IR
HEEEEEEEEER
\ A A
\ A A Time
(TTTTITTITT]
e IR
HEEEEEEEEER
\ A A

Figure 3.6: Schematic of the execution of a one dimensional cellu-
lar automaton with neighbourhood one. At every step, all array
elements are rewritten. A rewrite consists of calculating a new
value for each array element on the basis of its own value and those
of its immediate neighbours. Rewrites are shown as arrows, whose
upper half encompasses both the element to be rewritten and its
data context. Dotted lines indicate copying elements for use as
context for the boundary elements of the CA: boundaries may be
cyclic, as here, to preserve the energy of the system. Note that
each generation of the CA is rewritten data context-sensitively
and logically in parallel.

Another example of context-sensitive, synchronised reduction is that of
Lindenmayer systems [91], which are explained at length in Chapter 1. Suf-
fice to give an example of their execution, in Figure 3.8.

...we’re on a highway to L. 77
\

Time

Figure 3.7: Part of an example execution of a one dimensional
cellular automaton with neighbourhood one. In this example,
non-cyclic boundary conditions are used: the grid is infinite, and
only a part of it is seen here.

ATOM: (initial string)
AA[AB]B

RULES:
A->A
B ->A[B]B
EVOLUTION:

\ Time

[B]B]A[B]B

=

[[B1B1A[BIBIA[A[B]B]A[B]B

AAL A

A A A

Figure 3.8: Execution of a bracketed IL-system[118, 115]. At
each step, every element of the string is updated logically simul-
taneously. using some rule applicable to that element. To those
elements to which no rule applies, the identity function is applied.

3.6 Encoding I' in PT with Sg and Sgo.

The extra freedom we have offered the programmer in terms of when to syn-
chronise delivers insight into the properties of I'’s interleaving composition
and its relationship with a true parallel operator. Although we successfully

78 State synchronisation and data contexts...

gave an encoding into PT of I" in Section 2.3.1 of Chapter 2, we can now give
another encoding, which makes explicit the state synchronisation step after
every " primitive function application. Consider the following translation of
I' into PT:

[(B,4] “ (B 4,535

[P+ Q] [P] I [Q]
[QopP] ' [P3[Q]

def

where:

o
—n

€ (0 = if = fail)

< sync
< (semi = cond = succ; = succy = succs)

Proposition 9 (Correctness of the translation) Our translation of T
wnto PT 1is correct.

Proof by induction over the structure of the semantics. The proof can
be seen in Appendix A.3.

We give the possible reduction paths for each of two I' programs, which
were encoded according to our scheme. The possible reduction paths mimic
those of [96], thereby showing that the context-sensitive behaviour of T' is
preserved:

(((P1\2/3 s (P2351)) ||| (P31 8!\);{3}> ((PL3gHI (5313!), {3}
(P23sh) [(P3151),{3}) ((P125)5(P233), {1}) (P1351,{1})
" " +

(P2335!,{1}) (P2351,{2}) (e, {3}

{ {
(e,{1}) (e,{3})
3.7 Addendum: the MSTL Goblin

In the light of the investigations of program and data context-sensitivity,
failure synchronisation and state synchronisation undertaken in the last two
chapters, we present a new MSTL, Goblin. Goblin allows data contexts to be
specified for primitive functions and makes state synchronisations explicit.
Goblin’s interleaving operators are program context-insensitive, in the sense
that inapplicable primitive functions are just as interesting as applicable
primitive functions. Goblin therefore suffers from none of the composition-
ality problems discussed in Chapter 2. This seems to this author to make
Goblin preferable to both I and to CGP.

The concrete syntax of Goblin is presented in Figure 3.9. Goblin’s oper-
ational semantics is defined by its translation into PT, given in Figure 3.10.

...we’re on a highway to L. 79

system = { typedec}* program multiset defs
typedec = type ‘==’ { type name ‘’}* type name ‘;’ (type declaration)
name =string
type =string
prog. = (synchronise)
‘empty’ (empty program)
identifier (primitive function)
‘loop’ n ‘on’ prog. (loop n times on prog.)
‘(’ prog.)’ (brackets)
prog. ‘;’ prog. (sequential composition)
prog. ‘|’ prog. (choice)
prog. ‘|||’ prog. (interleaving composition)
‘if” prog. ‘then’ prog. ‘else’ prog. (conditional execution)
‘when prog. ‘do prog. (conditional execution)
‘unless’ prog. ‘do’ prog. (conditional execution)
prog. ‘¥’ (repetition)
X ‘=’ prog. (prog. variable binding)
defs =function*

function =identifier ’

| identifier

synchronising prim. fn.)
non-synchronising prim. fn.)

) L(? arg* ()7 [CaSGS] L;
) ([7 arg* (]7 [cases] £;7

remove multiset element)
read multiset element)

arg =type tuple
| ‘7’ type tuple

~~ —~~

cases ={ ‘=’ [predicate ‘] multiset }*
multiset ={’ [{ tuple ‘,’ }* tuple] ‘}’

tuple =element
| ‘(C { element ‘) }* element ‘)’

condition=expression

element =integer
| float
| boolean
| string
| variable
| variable ¢.” name (tuple element projection)

Figure 3.9: The concrete syntax of Goblin. Expressions are defined stan-
dardly. ‘Prog.’ is an abbreviation for ‘program’

80 State synchronisation and data contexts...
iGoblin dlef (semi = fail; = fail, = sync)
< (succ; = succy = succz = cond)
def
[(P)] d§f [P]
I = (True, 0, Sg2)
def
[P; @l d§f [P]51Q]
[P Q] = ([P1s1QD | (1Q151PD)

[if P then @) else R]
[when P do Q]
[unless P do Q]
[Loop n on PJ

[Loop n on PJ

[Pl Q]
[X = P
[P+]

[¢C args)’ cases]
[‘[’ args ‘1’ cases]
[args cases],s

where

—

= s
—~~
By
NN

Figure 3.10: Goblin’s translation into PT. Selection functions Sg1 and Sge

are to be found in Section 3.5.

(P15 [Q] : [F]

P15 Q] : e

P15 e: Q]

[Pls[loop n—1 on P] ifn >0
€ ifn=20
P11 [Q]

X =[P]

pX.[P] BX:e

[args cases],ss!

[args cases],s

(B(famaA(jamasGl)

[args]ra
[args]nra
[cases]s
[cases],

...we’re on a highway to L. 81

Our translation function is simplified by the assumption that primitive func-
tions are inlined into the main body of code before being translated into PT.

The translation of all constructs except the primitive functions is straight-
forward. Primitive functions (which have the form of case statements in Gob-
lin) are translated in several steps. The function arguments (both non-data
contextual and data contextual) are collected together into two sequences,
the non-data contextual arguments by [] -, and the data contextual by [nrq-
The condition function B is generated by [[], which gives the disjunction
of all the conditions occurring in case statements. The action function A is
also a conditional, generated by []a, returning different result multisets for
each case in the primitive function. We omit some of the technical details
of the translation of primitive functions: the details only concern collecting
the arguments into sequences and organising the conditions. Furthermore,
Goblin features multiple multisets: every element has associated with it a
multiset name (a chromatic type in the terminology of [95]). To avoid the
tedious machinery associated with explicitly checking the chromatic type of
every element, we assume that all elements passed to B and A are of the
correct chromatic types. In [95], we show how to infer chromatic types.

We give below an example Goblin program (written in the concrete syn-
tax), together with its translation. Our example program is:

max* { ... }

where
max = (Int %, ?7Int y)-> x < y: {};

The translation of this program into PT is as follows:

[maxx*] =pX.[max],s D e

[(Int x, 7Int y)-> x < y:{}] =[(Int x, ?Int y)-> x < y:{}]ps3!
[(Int x, ?Int y)-> x < y:{}],r=(B(Z,9), A(Z,), Sc1)

7 =[Int x, 7Int y]. = Int z

=[Int x, ?Int y]pre =Inty

e SR

(Z,79) =[->x<y: {}Jo=2>y
(Z,7) =[->x <y: {}]a=if 2>y then

Therefore, we have:

pX.((B(Int z,Int y), A(Int z,Int y),Sq1) §!) DX e
where

B(Int z,Int y) =z >y

A(Int z,Int y) = if (z > y) then (

We give an intuitive description of the dynamic semantics of Goblin, for
each construct in the concrete syntax. Application of a primitive function to
a multiset results in replacement of the function’s arguments by its results
iff the predicate is satisfied. There are two kinds of primitive function: those
which immediately synchronise the state and those which do not. State syn-
chronising primitive functions update the state as soon as they are applied.

82 State synchronisation and data contexts...

Non-synchronising primitive functions synchronise the state either (i) after
application of the next synchronising primitive function or (ii) at the next
‘1’ function. ‘!’ forces a state synchronisation. If a function makes use of a
data-context element e from multiset M, this is indicated by ?M e. The loop
construct loop n on P attempts to apply P n times. Sequential composi-
tion of programs is standard. Non-deterministic reduction P | Q reduces P
and Q in any order. An interleaving composition of two programs P ||| Q
proceeds non-deterministically. At each reduction step, it selects either P or
Q and reduces that program by one step. To avoid excessive use of empty
programs, conditional function application can be written in three ways. if
P then Q else Ris the full form. when P do Q is equivalent to if P then
Q else empty. Lastly, unless P do Q is equivalent to if P then empty
else Q. Finally, P* applies P to a multiset as many times as possible. X =
P names a program fragment, allowing recursive programs to be defined in
terms of themselves. Termination occurs when the program is empty. We
see a number of examples of Goblin programs in Chapter 4.

3.8 Future work

We mentioned in Section 3.2 the possibility that the possible parallelism
available to a multiset program which makes use of data context might be
higher than that of a program which does not make use of data context. We
should investigate this issue: if it turns out that our intuition is correct, it
is another strong motivation for including data context in future multiset
transformation languages.

Our current approach to synchronisation demands that the programmer
explicitly expresses when a state synchronisation is to occur. Wim Vree has
suggested clarifying whether or not the explicit state synchronisation can be
omitted, if a more complex i-tuple is used and the interleaving operator deal
with its own synchronisation implicitly. Unfortunately, there was not time
to examine this very interesting suggestion.

There seems to be a relationship between the operators of Chaudron’s
Schedules [36] and those of PT (especially when a non-prescriptive parallel
operator is described). So far, however, we have not investigated the rela-
tionship between Schedules and PT with state synchronisation and with or
without data context. This would be an interesting topic to explore.

Finally, the multisets that have been used as example states in this chap-
ter are passive in the sense that they do not contain tuples which are them-
selves programs. Given the current interest in using multiset transformation
languages as a basis for coordinating programs or applications [1], the cur-
rent approach should be extended to include programs as possible multiset
elements. The precise technical impact of such a change should be assessed.

...we’re on a highway to L. 83
3.9 Conclusions

We have demonstrated how to encode state synchronisation and data con-
texts into PT using new selection functions. We have discussed the relation-
ship between their combination and true parallel operators (both prescriptive
and non-prescriptive). We have shown that interleaving, when augmented
with data contexts, does not give the same possible behaviours as a truly
parallel operator, at least when primitive functions are reduced atomically.

The work presented in this chapter is orthogonal to that discussed in
Chapter 2: we make no assumptions here about the the i-tuple’s elements,
except when presenting particular examples. This means that it is possible to
generate logically parallel, data-context sensitive versions of all the languages
explored in Chapter 2, with the appropriate choice of i-tuple.

Our original motivation for investigating the constructs explored in this
chapter was to show how to encode L-systems [91] (both OL-systems and
IL-systems) into PT. Rewriting a string in L-systems is carried out in a lock-
step fashion, with all symbols in the current string being rewritten logically
simultaneously. Furthermore, the presence of data contexts in IL-systems
prompted the investigations of the interactions between context and par-
allelism, in large part prompted by Professor Prusinkiewicz’ criticisms of
the ‘no overlapping sub-states’ policy common in the semantics community
when defining parallel operators [114]. Unfortunately, the multiset was and
remains unstructured, making it awkward to encode data structures. There-
fore, our attention has been limited in this chapter to the control-flow issues
attending translations from an L-system-like parallel reduction theory to a
multiset transformation language. Our example programs will have to wait.

84

State synchronisation and data contexts...

Chapter 4

Modelling stochastic
phenomena using multiset
transformation

We propose using multiset transformation languages as a general computa-
tional model for simulations of stochastic phenomena. Multiset transforma-
tion languages are general enough to capture a large number of stochastic
effects and possess a well-defined mathematical meaning. We show that, de-
spite initial appearances, the non-determinism present in multiset transfor-
mation languages is unrelated to the techniques required for full programmer
control of general stochastic applications. Using an alternative mechanism,
described in this chapter, we present multiset implementations of a number
of typical stochastic applications, including Monte Carlo integral approxi-
mation, diffusion-limited aggregation, a genetic algorithm and a simulated
annealing technique which realises multiple Markov chains simultaneously
and therefore potentially in parallel.

4.1 Models of stochastic phenomena

When a solution or approximate solution is required to a computationally
intractable physical problem, the only possible course of action is often to
build a model of the physical system and to simulate explicitly the sys-
tem’s evolution [120]. Essential to the veracity of the results gained is the
requirement that the implementation corresponds in some well-understood
way to the physical system being studied. To ensure that this property
holds, a model is constructed at a number of abstraction levels, starting
with a mathematical description of the system being investigated (e.g. a set
of partial differential equations) and ending up with a machine-executable
program.

In addition to the above considerations, many physical or biological pro-
cesses are stochastic in character [3]. Simulating stochastic processes on a
computer requires that our computational model be able to express well-

85

86 Probabilistic multiset transformation...

defined stochastic effects independently of the fine operational details of the
machine being used. This is particularly important to ensure repeatability
of an experiment: a model has to yield (statistically) identical results when
implemented in different ways on any hardware configuration.

Essential to stochastic models is the concept of random numbers and
distributions thereof. Closely following Ross [120], we introduce probability:

Suppose that for each event A in a sample space S of mutually-exclusive
events, there is a number P(A). P(A) is a probability iff

1. VA€S0<P(A4) <1

2. P(S)=1
3.V P(U4) = % P(4)

Rule 1 states that the probability of a particular event happening is
between 0 and 1 (inclusive). Rule 2 states that the probability that an event
which happens is one of the events in the sample space is 1. Rule 3 states
that, for any set of events, the probability that at least one of these events
occurs is the sum of the probabilities associated with each event individually.

A random variable is a quantity of interest determined by the result of
some experiment [120]. A discrete random variable is a random variable
with at most a countable number of different possible values. A probability
mass function for a discrete random variable X is defined, pointwise, as the
probability p(z) that each possible value z of X will occur.

Research into simulation of stochastic processes has resulted in a number
of alternative models: the choice of which to use depends upon the details
of the required simulation. Examples of such models include Monte Carlo
methods [138], diffusion-limited aggregation (DLA) [143], genetic algorithms
(GAs) and simulated annealing (SA) [83]. All of these methods have been
extensively studied, allowing the simulator to verify that an implementation
of their chosen model exhibits the desired properties.

The models mentioned above rely upon stochastically choosing new con-
figurations for a system or upon determining properties of a system using
stochastic methods. All of the methods are prevalent in the physical and
biological modelling communities. Given that we wish to write applications
taken from those communities in MSTLs, one might ask whether we can
encode stochastic applications in MSTLs. As we show in this chapter, the
answer to this question is ‘Yes’. Our answer is illustrated with examples.

4.1.1 The structure of this chapter

This chapter is structured as follows. Firstly, in Section 4.2 we introduce
the principles of programming MSTLs for stochastic computation. Next,
in Section 4.3, we show how to control the executions of programs written
in the MSTL Goblin, in three ways, using probabilities. Goblin’s syntax
and semantics were introduced in Chapter 3. In Section 4.4, we give (the
skeletons of) a number of stochastic applications in terms of Goblin. Finally,
in Section 4.5, we explain possible avenues for future work and draw our
conclusions.

...you take your chances. 87

4.2 Stochastic versus non-deterministic com-
putation

Arguably the most obvious choice of method for implementing stochastic
choices in MSTLs is to harness their non-determinism. Indeed, this sugges-
tion has already been made [108]. The semantics of most MSTLs possess
two orthogonal sources of non-determinism.

e Non-deterministic program choice: if several applicable programs are
in an interleaving composition or in a choice, the choice of which pro-
gram is actually executed (first) is made non-deterministically.

e Non-deterministic element selection. When applying a primitive func-
tion, we search in the multiset(s) for a sequence of elements for which
the function’s predicate is satisfied. If more than one sequence satis-
fies the predicate, the sequence to which the function will actually be
applied is chosen non-deterministically.

These two kinds of non-determinism correspond to those properties stated
in Section 4.1 and can be harnessed by simple language extensions [108]. The
advantage of this approach is that writing stochastic programs is directly
supported by the language. Furthermore, the implementation can provide
the programmer with (perhaps static) assurances that the probabilities as-
sociated with different events satisfy the laws of probability given in 4.1.
An example of this approach, in a pseudo-Goblin syntax, is given below.
The program takes an integer and, with a probability of 0.75, places it into
multiset Yes. Otherwise, the integer is placed into multiset No.

f = (Int x) -> probability 0.75: { Yes x }
-> probability 0.25: { No x };

In [108], the implication is made that such an approach is necessary to
harness probabilistic computation in an MSTL. Consider, for example, the
following, from page 285 of the paper (emphasis ours):

A useful variant of the I' model is obtained by introducing prob-
abilities for selection when one or more predicates are true for
several non-disjoint subsets at the same time.

In an implementation of an MSTL intended to be used for writing stochas-
tic applications, programmer annotations or other syntactic help could be
added to tell the compiler which values are probabilities. Knowing which
values are probabilities can help the runtime system ensure that the laws of
probability, given in Section 4.1, are satisfied throughout the program’s exe-
cution. However, while such a suggestion may offer the programmer consid-
erable assistance, it is not a necessary condition for implementing stochastic
applications in an MSTL. In other words, we can encode stochastic appli-
cations in an MSTL without having to add any machinery to the language.
We demonstrate our claim in the following sections, by giving a number of

88 Probabilistic multiset transformation...

examples of stochastic programs written in a representative MSTL, Goblin.
All of these programs could also be written in I', but I'’s control-flow dif-
ficulties (discussed in Chapter 2) make the encodings awkward. We note
that the control-flow difficulties from which I' suffers are unrelated to the
stochastic extensions to I' suggested in [108].

4.3 Stochastic MST program reduction

We show how to implement stochastic programs in MSTLs by making it
possible to select both functions and multiset elements probabilistically. The
exact stochastic properties of the selection process depend on two factors:

1. The probability mass function of the random number generator.

2. The relative sizes of the intervals spanned by the bounds of each ele-
ment.

There are two ways in which the probabilities associated with a par-
ticular choice can be assigned. Either they can be assigned statically, so
that the probabilities associated with each possible choice are written into
the program, or they can be assigned dynamically, so that the probabilities
associated with each possible choice are determined at run-time. In the in-
terests of thoroughness, we give an example of each of these possibilities,
in the sections shown in the table below. All of our programs are written
in Goblin, whose syntax and semantics are given at the end of Chapter 3.
All the primitive functions used in these examples are synchronising: the
state is updated as soon as the function is applied. Synchronous (and non-
synchronous) primitive functions are also described in Chapter 3.

Function choice | Element selection | Termination
Statically- §4.3.2 §4.3.4 §4.3.6
determined
probabilities
Dynamically- §4.3.3 §4.3.5 §4.3.7
determined
probabilities

4.3.1 Random number generators

Random number generators are trivial to write in Goblin. This one uses the
linear congruential method of Lehmer [90, 84]. b and m are constants. seed
is the seed.

Random == real value;
random* { Random seed }

where random = (Random x) -> Random (((x.value * b) + 1) % m);

...you take your chances. 89

Each application of function random removes the current value of multiset
Random and uses it as a seed to generate the next pseudo-random number.
This new number is placed back into multiset Random. Throughout the rest
of this paper, we omit the details of random number generation from our
examples.

4.3.2 Functions chosen with probabilities determined
statically

We show a program which applies a function, chosen at random. The prob-
ability of a particular function being chosen is determined statically.

Random == float value;
random; (f1 ||| £2) { Random number, ... }
where

r.value < 0.3 and ...):{...};
r.value < 1.0 and ...):{...};

f1 = (?Random r,...) -> (0.0 <
f2 = (7Random r,...) -> (0.3 <

Multiset Random contains a single random number in the interval [0, 1).
Functions f1 and f£2 take that random number as an argument. Each
function requires that the value of that random number be between cer-
tain bounds. Assuming that the random numbers are uniformly distributed
n [0,1), the probability that function £1 (respectively £2) is chosen is 0.3
(respectively 0.7).

4.3.3 Functions chosen with probabilities determined
dynamically

We wish to associate probabilities with function choices such that the proba-
bility of a particular function being picked can alter as the program’s reduc-
tion progresses. To do so, we associate a tagged multiset with every function
(multiset F1 with function £1 etc.). Each of these multisets contains a single
tuple consisting of a pair of bounds. The bounds indicate how likely each
function is to be applied. By representing the bounds on functions using
multiset elements, we can alter the bounds during the program’s reduction.

Random == float value;

Fl == float upper, float lower;

F2 == float upper, float lower;

random; (f1 ||| £2) { Random seed, ...}

where

f1 = (?Random r, F1 f, ...)
-> (f.lower <= r.value < f.upper): { F1 £’, ... }
-> {F1 £, };

f2 = (?Random r, F2 f, ...)
-> (f.lower <= r.value < f.upper): {
{

90 Probabilistic multiset transformation...

Which function is chosen depends both upon the random number gen-
erated and the upper and lower bounds associated with each function. If
the random number falls between the upper and lower bounds for function
fn, then function fn can be chosen. Whether the function can or cannot be
applied, the bounds in multiset Fn can be altered, changing the probability
that the function is picked in the future. It is up to the programmer to
ensure that the bounds for every function are non-overlapping. The general
problem of ensuring that the sum of the probabilities is unity is discussed in
section 4.4.3.

4.3.4 Subset selection with probabilities determined stat-
ically

We show how to encode stochastic programs such that the probabilities of
particular elements being chosen are determined statically. We separate our
treatment into two parts, treating selection of single elements separately from
selection of non-singleton subsets. The reason is that generating probabilities
for non-singleton subsets is more difficult: we have to be able to associate
a single probability with a number of multiset elements. In the case of
singleton subsets of the multiset, we have but to assign a probability to each
element of the multiset singly.

Single element selection with probabilities determined statically

To select a single element of the multiset probabilistically, we can generate a
random number and a multiset element and check the values of both. This
will ensure that, with a particular probability, an element with a particular
value will be chosen. An example program is given below, wherein the choice
is performed by function grab. The program selects a single integer from
the multiset. There is a probability of 0.7 that the chosen number will be
smaller than 5 and a probability of 0.3 that it will be larger.

Random == float value;

Item == integer value;

Chosen == float value;

random; grab { Random seed, Item item, ... }
where

grab = (Item i, 7Random r)
-> (0.0 <= r.value < 0.7) and (i.value < 5): { Chosen i };
-> (0.7 <= r.value < 1.0) and (i.value >= 5): { Chosen i };

Non-singleton subset selection with probabilities determined stat-
ically

By modifying the above program to select a number of multiset elements
together, we can choose non-singleton subsets of the multiset stochastically.
We give an example, below. The program has a probability of 0.7 of choosing
two unequal integers and a probability of 0.3 of choosing two equal integers.

...you take your chances. 91

Random == float val;

Int == int val;

Chosen == int fst, int snd;

random; grab { Random seed, Int someint, ... }

where grab = (7Random r, Int x, Int y)
-> (0.0 <= r.val < 0.7) and (x !'= y):{Chosen (x.val, y.val)}
-> (0.7 <= r.val < 1.0) and (x == y):{Chosen (x.val, y.val)};

After the program has been reduced, multiset Chosen contains a pair of
elements whose values fall into the desired range. The problem of maintain-
ing at unity the sum of the probabilities associated with all possible choices,
is addressed in Section 4.4.3.

4.3.5 Dynamic variation of probabilities for subset se-
lection

We show how to encode stochastic programs such that the probabilities of
particular elements being chosen are determined at runtime. As in Sec-
tion 4.3.4, we separate our treatment into two parts, treating selection of
single elements separately from selection of non-singleton subsets.

Single element selection with dynamically-determined probabili-
ties

To select a single element of the multiset probabilistically, we can asso-
ciate bounds with each element and generate a random number. As in
Section 4.3.3, if the random number falls between the bounds of an element,
then that element is picked by function grab. An example program is given
below:

Random == float value;

Item == float value, float lower, float upper;
Chosen == float value;

random; grab { Random seed, Item item, ... }
where

grab = (Item i, 7Random r)
-> (i.lower <= r.value < i.upper): { Chosen i };

Non-singleton subset selection with dynamically-determined prob-
abilities

To choose probabilistically a non-singleton subset of the multiset, we need to
select several elements, on the basis of their values only. If we wish to use the
bounds technique previously introduced, we can use a pair of functions which
calculate the probability bounds associated with a number of elements. For
example, we could use a function prob_lo() to calculate the lower bound
associated with a number of elements and prob_up() to calculate the upper

92 Probabilistic multiset transformation...

bound. This approach enables us to tie particular probability ranges to the
values of a number of elements: if a generated random number falls between
those bounds, then those elements are picked. As an example, consider the
following program, which removes pairs of elements from the multiset with
dynamically-determined probabilities:

Random == float value;

Int == int val;

Chosen == int fst, int snd;

random; grab { Random seed, Int someint, Int otherint, ... }

where grab = (7Random r, Int x, Int y)
->(prob_lo(x.val, y.val) <= r.value < prob_up(x.val, y.val)):
{ Chosen (x.val, y.val) };

After the program has been reduced, multiset Chosen contains a pair of
elements whose values fall into the desired range. The problem of maintain-
ing at unity the sum of the probabilities associated with all possible choices,
is addressed in Section 4.4.3.

4.3.6 Termination with a statically-determined proba-
bility

We can use the same techniques as above to produce programs which termi-

nate stochastically. The technique involves ensuring the termination of the

program if an element has a particular value, which value is probabilistically

assigned. In this case, the relevant element is a random number. Consider

the following program:

Random == float value;
Counter == int val;

(unless done do (random; increment))*

{ Counter 0, Random seed, ... }

where done (?Random r) -> (r.value > .5): {};
increment = (Counter x) -> Counter (x.val + 1);

This program continues to apply functions increment and random unless
function done determines that the random number is greater than one half.
If so, the program terminates. The result is a random positive integer in
multiset Counter, such that the probability of a certain integer n being
reached is ZL"
4.3.7 Termination with a dynamically-determined prob-

ability

In this program, the probability of the program terminating decreases with
each increase in the integer in multiset Counter until it is no longer possible

...you take your chances. 93

for the program to terminate. The example is somewhat artificial, but is
sufficiently similar to the previous example for easy comparison.

Random == float val;
Counter == int val;

(unless done do (random; increment))*

{ Counter 0, Random seed, ... }

where

done = (?Random r, ?Counter c)->((r.val * 100)>(1/c.val)):;
increment = (Counter x) -> Counter x.val + 1;

4.4 Example stochastic applications

Now that we have shown the ways in which a program’s reduction can be
influenced by stochastic effects, we conclude with four more serious exam-
ples of probabilistic applications. These are the Monte Carlo method [138]
for integral approximation, Diffusion-Limited Aggregation [143], a Genetic
Algorithm (GA) [72] and Simulated Annealing (SA) [83].

4.4.1 Monte Carlo integral approximation

We use the Monte Carlo method to calculate integrals of a function. We
demonstrate an approximation of w. The statement of the problem is to be
found in Ross [120, pages 40-41], where the interested reader can also find
more details than those given here.

Take a square of side 2 centered on the origin and a circle of radius 1,
also centered on the origin (a graphical representation is given in Fig. 4.1).
The area of the square is 4. The area of the circle is (mr? where r = 1) = 7.
Suppose that a random vector (z,y) is uniformly distributed in this square
(i.e. both z and y are independent, uniformly distributed random variables).
Then it follows that the probability that the point (z,y) lies in the circle is
the probability that z? 4+ y?> < 1. Again, because the random variables are
uniformly distributed, this equals the proportion of the square which is in
the circle, which equals /4.

Therefore, if we generate a large number of random points in the square,
the proportion that will fall within the circle will be approximately =/4. As
Ross shows (page 41), we can estimate 7 by generating a large number of
pairs of random numbers (z,y) in the range [0,1) and estimating =/4 as the
fraction of pairs for which (2z —1)2 + (2y — 1)2 < 1.

The program to approximate 7 is shown below. The larger the number
of iterations which are performed, the better the approximation to 7:

Randomvec == real x, real y;
Hits == int hits;
PrintFloat == real value;

94 Probabilistic multiset transformation...

1.1

0,0)

Figure 4.1: A square of side 2 containing a circle of radius 1.

(loop 1079 on (randomvec; guess)); give_result
{ Randomvec (0, 0), Hits O }

where
randomvec = (Randomvec v)->Randomvec (random(v.x), random(v.y));

guess = (Randomvec v, Hits h)
=> ((2*% v.x) - 1)72 + ((2 * v.y) - 1)"2 <= 1: Hits h.hits + 1
-> Hits h.hits;

give_result = (Hits h) -> PrintFloat (4.0 * h.hits) / 1079;

The program executes as follows. The loop (randomvec; guess) is ex-
ecuted 10° times. For each iteration, randomvec generates a new vector of
random numbers, where random() contains the machinery described in Sec-
tion 4.3.1. Next, function guess checks to see if the vector falls within the
circle. If it does, then the counter in multiset Hits is incremented. If not,
then the counter in multiset Hits is unchanged. This loop continues until
all 10° guesses have been performed. Finally, function give_result prints
the result.

4.4.2 Diffusion-limited aggregation

Diffusion-limited aggregation (DLA) was introduced in [143] and explained
in Chapter 1. We give below an example Goblin implementation of DLA,
wherein all primitive functions are synchronising.

startup;
loop (100000) on
(randl; new_walker;

...you take your chances. 95

Figure 4.2: A DLA cluster with box dimension 1.64

(rand2; move; box; candidate; collide*; rebuildx*;
(new_sides ||| move_again ||| draw))x*)

We include only the main program of the DLA, eliding the details of the
primitive functions for reasons of clarity. We show an example DLA cluster,
as generated by this program, in Fig. 4.2. The program executes as follows:
firstly, a new walker is placed at a random place on the birth circle (functions
randl and new_walker). Then, that walker begins to perform a random
walk (functions rand2 and move). If the walker reaches the death circle, it is
temporarily removed by function box. Function move_again moves it back to
the birth circle later on. If the walker moves into a location adjacent to the
growth form, it sticks to it (functions candidate, collide and rebuild). In
general, the birth and death radii are maintained as multiples of the diameter
of the cluster. Therefore, once the current walker has accreted to the cluster,
the birth and death circles are enlarged, if this is necessary, using function
new_sides. Finally, the current figure is drawn on the screen using function
draw.

4.4.3 A genetic algorithm: an example using normali-
sation

Genetic algorithms (GA) were introduced in Chapter 1. The skeleton for
the genetic algorithm code is given below. All primitive functions are syn-
chronising.

loop iterations on (addup*; (loop 2 on choose); crossover){...}

Where:

96 Probabilistic multiset transformation...

e addup adds up the probability associated with each possible string in
the multiset.

e choose chooses a string from the multiset, with probability propor-
tional to the fitness of the string.

e crossover takes the two strings already generated and performs a
crossover operation on them.

In this example, the strings are not traversed in any particular order. For
each application of addup, a string is chosen from the multiset and its fitness
calculated and added to the total. Once the set of candidate strings for this
generation is empty (i.e. has been fully processed), the computation proceeds
by choosing the strings for crossover. The general problem of normalising the
probabilities so that the sum of the probabilities of all the possible choices is
one, is not easy. The standard implementation technique is that here used: a
traverse of all the elements of the state determines the total of some quantity
present in the state. Any probabilities subsequently generated are divided
by this amount, thereby being normalised. The formal details of this are
given in Section 1.2.7.

Notice that adding probabilistic primitives to Goblin would not help in
coding this example: the probabilities of a particular choice are dependent
on the fitness of particular strings relative to the total fitness of the gene
pool. Thus, the dynamic changes to the multiset cause dynamic changes to
both the fitness of individual strings and the fitness of the total pool. This
requirement of dynamically-changing probabilities is also explicitly recog-
nised by Krishnamurthy and Murthy [108, page 291], who, unfortunately,
give no comments on the implications of this idea for their probabilistic

MST model.

4.4.4 Simulated annealing

Simulated annealing (SA) [83] generates approximate solutions to combi-
natorial optimisation problems. The model is an abstraction of a cooling
process (hence the name) in which particles explore a space for regions of
low energy. Beginning with a high ‘temperature’, particles walk randomly
through the space, moving to new locations with probabilities reflecting the
particles’ tendency to move to lower energy states. The initially high tem-
perature of the particles is manifested in their ability to make large jumps
in the phase space, a property which ensures that the probability is low that
the particles will be trapped in non-global minima. As the particles’ temper-
ature is lowered, their tendency to settle at local minima increases, leading
to exploration of progressively smaller parts of the phase space and an in-
crease in the probability that a particle will get trapped in a local minimum.
Eventually, the possible movements in the phase space which can be made
by the particles are so small (due to the particles’ now low temperature) that
an effective freeze takes place. When the difference in entropy between two
successive generations is smaller than some constant, indicating that such a

...you take your chances. 97

freeze has, indeed, taken place, the annealing is considered terminated. The
chain of successive energies of the system is a Markov chain [120, page 181].

Implementation of SA with single Markov chain

The program below implements simulated annealing, in Goblin, with a single
Markov chain. The program proceeds as follows. Firstly, the program checks
to see if the difference in energy between the previous configuration and the
current configuration is smaller than small, using function done. If this en-
ergy change is, indeed small, then the program terminates. Otherwise, the
program continues executing. Function update-chain updates the current
configuration (from multiset This_Iteration), using the current temper-
ature (from multiset Temperature) and a random number (from multiset
Random). Using these values, it generates a new configuration, placing it in
multiset New_Iteration. Function choose-chain chooses between the cur-
rent configuration and the new configuration. The lowest energy is adopted
and placed in multiset This_iteration. At the same time, the current con-
figuration is placed into multiset Previous_Tteration. Function cool cools
the system every interval time steps. Finally, the time is increased and
the whole program executed again. In what follows, 2%y is the remainder
of an integer division of z by y.

Time == int time;
This_Iteration == int energy,
New_Iteration == int energy,
Previous_Iteration == int energy,
Temperature == float degrees;

(unless done do (random; update-chain; choose-chain;cool;tick))x*
{Time 0,This_Iteration...,Previous_Iteration...,Temperature...}

where
done = (?This_Iteration cl, ?Previous_Iteration c2) ->
(abs(cl.energy - c2.energy) < small):;

update-chain = (7Random r, ?Temperature t, ?This_Iteration c)
-> { New_Iteration updated(r, t, c) };

choose-chain =
(New_Iteration cl, This_iteration c2, Previous_Iteration c3)
-> cl.energy < c2.energy:
{ This_Iteration cl, Previous_Iteration c2 }
-> { This_Iteration c2, Previous_Iteration c2 };

cool = (Temperature t, 7Time ti)
-> (ti % interval == 0): { Temperature newtemp(t) };

tick = (Time t) -> Time t + 1;

98 Probabilistic multiset transformation...
Implementation of SA with multiple Markov chains

The description given above treats Markov chain generation as an inherently
sequential process. A scheme for implementing Markov Chains in parallel
has been suggested in [133]. In the suggested scheme, a Markov chain is
begun on a single processor. Every t time steps, all of the existing chains
adopt the best (i.e. lowest energy) configuration of any of the existing chains
at time t. At the same time, a new chain at the same temperature is be-
gun on another processor. The initial configuration of the new chain is the
best of all the existing chains. This scheme is represented graphically in
Fig. 4.3. We implement multiple chains by having multiple elements in mul-
tisets This_Iteration and Previous_Iteration. Each of these elements is,
with respect to the single-chain implementation, augmented with another
field, chain, which indicates from which chain a particular configuration
comes. We give a sketch of the multi-chain implementation of SA below.

processors

===
HHH]

time

Figure 4.3: A multiprocessor implementation of parallel Markov
chains. As time progresses, more processors are allocated. Each
new processor begins with the best chain generated by any pro-
cessor up to that time. Vertical arrows indicate communication
between processors. Horizontal arrows suggest a continuity in the
computation within a single processor.

(
unless done do (
(
random; update-chain; choose-chain;
if new-best-chain then make-new-best-chain
EF
(if cool then (spawn-chain; reinitialisex); tick
)
)%

{Time O,

...you take your chances. 99

This_Iteration..., New_Iteration..., Previous_Iteratiomn...,
Temperature..., Number_of _chains 1, Best_chain_so_far...}

The execution of this program is essentially the same as that of the
single-chain version, although extra housekeeping is needed to keep track of
the best chain so far, spawning new chains, and replacing all existing chains
with the best chain so far. In terms of making use of probabilities, the
new program is no different from the old. Function spawn-chain begins a
new chain when the system is cooled. Function reinitialise replaces all
current configurations with the best configuration so far.

4.5 Future work

The examples in this chapter are simple and do not attempt to be realistic
models of physical processes. Instead, they should be viewed as part of a
feasibility study in the usefulness of MSTLs for modeling stochastic phe-
nomena. Despite this caveat, however, we believe that the principles which
we have here demonstrated are applicable to more serious stochastic models.
We also present more example stochastic programs in Chapter 5. We hope
to examine more and more serious probabilistic applications in the future.

In Section 4.2, we discussed the possibility that syntactic and/or runtime
help be given to the programmer to assist her in producing better stochastic
programs (for example by checking that the laws of probability are satisfied
for a particular event space). We have not yet explored detailed proposals
in this direction.

4.6 Conclusions

Modelling many physical systems requires that stochastic simulations be
performed. We claimed that ideal abstract models for this purpose, are
the high-level descriptions which MSTLs offer. The details of the MSTL’s
implementation, together with the quirks of the underlying hardware, are
hidden by a model which is compelling, easy to understand and which can
be implemented in a wide variety of ways [39, 139, 70]. Murthy and Kr-
ishnamurthy [108] claimed that stochastic programming was a useful appli-
cation area for MSTLs. With this we agree. However, in the same paper,
Murthy and Krishnamurthy also implied that an extension of an MSTL with
probabilistic constructs was necessary in order to be able easily to encode
stochastic applications. This claim is false, as we have here demonstrated.

100 Probabilistic multiset transformation...

Chapter 5

Modelling

environmentally-sensitive
growth using multiset

transformation!

We demonstrate the usefulness of multiset transformation for modelling
growth processes which combine generational growth with environmental-
sensitivity (such as photo-sensitivity and geometric constraints). Our exam-
ples are artificial structures with no immediate counterparts in physics and
biology. However, our studies are intended to show the feasibility of multiset
transformation for more realistic models. We show that multiset transfor-
mation is useful as both a formal and a computational model of growth
processes.

5.1 Introduction

Modelling growth phenomena has traditionally been an important applica-
tion area in formal language theory. There is a huge amount of literature
available on the modelling of botanical structures using Lindenmayer sys-
tems [91]. Good overviews of the application of L-systems for modelling
botanical objects can be found in [123] and [118]. An important yet prob-
lematic issue in developmental models of plants using L-systems is environ-
mental sensitivity. Many seed plants need light for their photo-synthesis;
in a realistic developmental model, this environmental influence should be
included. Another environmental constraint is that collisions between parts
of the growth form should be avoided: otherwise, physically impossible sit-
uations would occur. It is possible to construct generation procedures for a
botanical object, for example a branching structure, which is exactly self-

IThis chapter is based upon the paper “On modelling environmentally-sensitive growth
forms and cellular automata using multiset transformation” by H. McEvoy and J. Kaan-
dorp, which appeared in Fractals volume 4, number 4 [98].

101

102 Environmentally-sensitive growth...

avoiding. In reality, the influence of the environment induces irregularities
in the growth process which perturbs the self-avoiding structure. For exam-
ple, the growth process may be hindered by the presence of obstacles. In a
realistic model of a branching structure, a collision-avoidance mechanism is
a necessary prerequisite. In [117], a demonstration of environmentally sen-
sitive L-systems is given. Examples are given in which the growth is limited
by externally-defined bounding volumes. The L-systems applied to these
examples are context-sensitive and the environmental influence is included
by using an interpretation step on the string generated in the production
rule.

A good example of an environmentally-sensitive growth model is Dif-
fusion Limited Aggregation [143], which was described in Chapter 1. In
DLA, growth is modelled using a probabilistic cellular automaton (CA).
The growth form is represented by an aggregate of sites in a lattice. The
probability that a site adjacent to the cluster is added to the aggregate de-
pends on the local “nutrient” concentration. The highest probabilities occur
at sites with the highest local nutrient concentration. The environmental
influence is represented by the diffusion of nutrient from a source in the lat-
tice, while nutrient is consumed by the aggregate. The DLA model serves
very well as a model of a wide range of growth phenomena from physics
and biology. In [74], the generative power for pattern formation of both
cellular automata and L-systems is compared, where CA have the highest
generative power. For modelling growth and form of more complex systems
than aggregates of particles, the representation of the form by a CA remains
problematic: many branching structures can more easily be described using
an L-system. An alternative method is to represent the growth form by geo-
metrical objects, the growth process by an iterative geometrical construction
and to use discrete (lattice) representations to determine the environmental
influence [79].

A common property of environmentally-sensitive growth is directional-
ity. In [94], a deterministic model for directed fractal growth is discussed.
Directionality in real growing systems is observed as branches tend to grow
outwards from a form and not in all directions. Therefore a realistic model
of such processes should allow the expression of directionality constraints.

In this chapter, we demonstrate that the growth processes of environ-
mentally sensitive artificial branching structures and cellular automata can
be modelled using the multiset transformation language (MSTL) Gamma
(") [16, 19, 65]. Although we use an artificial branching structure in our
case studies, we intend that this chapter be seen as a feasibility study and
that similar methods to those here used be applied to the more realistic
morphogenetic models of physical and biological research.

In T, interaction between a function and a multiset only occurs when a
function removes an element from the multiset or inserts an element into
the multiset. In our presentation, we indicate the name of a multiset by
beginning it with a capital letter. This is followed by ‘::” for ‘remove’ or “:’
for ‘insert’. The elements in our multisets are arbitrary tuples. These are
constructed by placing a number of items, separated by commas, between

...Jove thy neighbour. 103

parentheses. We write x.1 for the first element of the tuple x, x.2 for the
second, and so on.

5.2 Modelling Growth of Ramifying Objects

We now turn to modelling growth objects using I'. The first example simply
draws a tree, and is included because it is the basis upon which the later
examples are built. The program is given in Figure 5.1. The object which
it produces is shown in Figure 5.2. The multiset Branch contains sextuples,
whose elements are, respectively, the z— and y— coordinates of one end of
the branch, the age of the branch, the length of the branch, the direction in
which the branch is growing, and the colour of the branch.

macro transform(x, angle, colour) =
((x.1 + (x.4 * sin(x.5))), (x.2 + (x.4 * cos(x.5))),
(x.3+ 1), (x.4 x .8), (x.5 + (angle)), (x.6 - (colour)))

macro polygon(x) = (4, x.6,
(x.1 + (x.4%cos(x.5)*.1)),(x.2 - (x.4*sin(x.5)*.1)),

(x.1 - (x.4%cos(x.5)*.1)),(x.2 + (x.4%sin(x.5)*.1)),
(x.1 + (x.4*sin(x.5) - (x.4*cos(x.5) * .05))),
(x.2 + (x.4*%cos(x.5) + (x.4*sin(x.5) * .05))),
(x.1 + (x.4*sin(x.5) + (x.4*cos(x.5) * .05))),
(x.2 + (x.4*%cos(x.5) - (x.4*sin(x.5) * .05)))

grow { Branch : (0, -.5, 0, .5, 0, 150) }

grow (Branch :: x)
->
Branch : transform(x, 5.585, 2),
Branch : transform(x, 0.175, 4),
Branch : transform(x, 1.047, 6)
Graphics : polygon(x) if x.3 < 6
-> {} otherwise;

Figure 5.1: A program which draws a branching object. The result of ex-
ecuting this program is shown in Figure 5.2. Macros transform() and
polygon() define, respectively, a 6-tuple and a 10-tuple. The contents of
the 6-tuple are explained in the text. The 10-tuple contains, respectively,
the number of vertices in the polygon to be drawn (i.e. 4), the colour of the
form, followed by four sets of (z,y) coordinates for the vertices.

The operation of the program is as follows. There are two multisets:
Branch and Graphics. Elements are removed from multiset Branch and the
conditional x.3 < 6 is evaluated with respect to the element just removed.
Depending on the value of the condition, either the element is discarded (if
the conditional is false) or it is replaced by three elements in multiset Branch
and one in multiset Graphics. The side-effect of placing a tuple in multiset
Graphics is that the tuple is used to generate a graphical image on the
screen (in this case, a branch). This is how we generated all of the images

104 Environmentally-sensitive growth...

Figure 5.2: A branching object akin to broccoli. The program which gener-
ates this object is given in Figure 5.1.

e

Figure 5.3: The network representation of the algorithm for generating a
branching structure. The algorithm is given in Figure 5.1.

in this chapter. Eventually, no more branches are left in multiset Branch
and the computation terminates due to data starvation. Notice that the test
to see whether a branch produces children is carried out locally: no global
knowledge of the contents of the multiset of branches is required. In fact, the
I' model makes impossible global knowledge of the contents of an arbitrarily-
large multiset: a particular function can only remove a constant-sized subset
of elements of the multiset.

We can represent the I' program as a network of multisets connected
together by functions: that is, as a process network [81]. The network
corresponding to the above multiset transformer is given in Figure 5.3. The
rectangles represent named partitions of the multiset. The ellipses represent
the functions. Data flows from the multisets, through the functions and into
(perhaps different) multisets.

Notice that the representation of I' programs as networks does not cor-
respond to normal process networks in that message orderings are not pre-
served and that there is no need for a consumer to consume values as the
producer produces them. Rather, the mechanism is more like that of gener-
ative communication in Linda [58]: messages are left in the multiset (tuple

...Jove thy neighbour. 105

space) until such time as they are retrieved.

The use of multisets rather than streams for communication between
functions allows the computation to continue in a non-deterministic manner.
For example, there is no need for all of the branches of a particular age to
be updated before any of the next younger age is updated. This is not
entirely realistic: if we model environmental factors, we would expect many
of the growth points to grow at the same time, if not at the same rate.
However, the I program can be altered to make it more realistic by including
a synchronisation step after the growth of each generation of branches. This
issue is discussed in greater detail in Chapter 3.

5.2.1 Environmental sensitivity 1: collisions with a fixed
object

We now show the suitability of I' programs for modelling growth of objects
which are sensitive to their environment. We begin by generating a growth
object whose branches cannot cross the boundaries of a box in which it is
placed. The I' program is shown in Figure 5.4. The image it produces
is shown in Figure 5.5. We can represent the I' program by a network,
shown in Figure 5.6. The elements of the multisets Line, Line_check and
Line_to_draw are sextuples with the same interpretation as in the previous
example.

lines + check + draw

{ Line_check: (.1, .07, 0, .6, 0, 75),
Graphics:(.55, .05, .55, -.55, 4),
Graphics:(.55, -.55, -.55, -.55, 4),
Graphics: (-.55, -.55, -.55, .55, 4),
Graphics: (-.55, .55, .55, .55, 4) }

lines (Line:: x)

-> Line_check: transform(x, .349, 2),
Line_check: transform(x, .300, 4),
Line_check: transform(x, .460, 6)

if x.5 < 9

-> {} otherwise;

check (Line_check:: x)
-> Line: x, Line_to_draw: x if not(collision(x))
-> {} otherwise;

draw (Line_to_draw:: x) -> Graphics: polygon(x);

Figure 5.4: A algorithm for generating a branching structure reminiscent
of broccoli in a box. The result of executing the algorithm is shown in
Figure 5.5. Macros transform() and polygon () are the same as before and
are therefore omitted.

The function lines behaves in the same way as the function grow in

106 Environmentally-sensitive growth...

Figure 5.5: ‘Broccoli in a box’: a growth object generated by the program
given in Figure 5.4.

Line @ Line_check
N

Filled_Polygon @ Line_to_draw

Figure 5.6: The network representation of the program for generating a
boxed ramifying structure. The program is given in Figure 5.4.

the previous example, except that its results are placed in set Line_check
instead of back into the multiset from which the arguments were removed.
Function check takes each line in turn and checks to see whether or not it
collides with the box. If it does, then it is discarded (this implies that it
has no more children). If it does not collide with the edge of the box, then
it is placed in multiset Line_to_draw to be drawn by function draw and a
copy of it is placed back in multiset Line to act as the seed for the next
generation of points. Again, computation is non-deterministic: it is quite
possible that branches are drawn in the opposite order to that in which they
were generated.

...Jove thy neighbour. 107

5.2.2 Environmental sensitivity 2: growth towards the
light

A T program which draws a photo-sensitive object is shown in Figure 5.7.
Figure 5.8 shows the result of executing the program. A network showing
the execution of the I' program is given in Figure 5.9.

macro bg = .75
macro pi = 3.14159265
macro new(xl, x2, x7, yi, y2) =\
(((((-pi rand pi) * bg) + \
((1 - bg) * arctan((yl - x1) / (y2 - x2))))) + (pi*x7))
macro neg_br(x, y) = ((y.2 - x.2) < 0)

germinate + grow + sign { Seed: (0, -.3), Sun: (1, 1) }

germinate (Seed:: x, Sun:: y)
->
Pot_Branch: (x.1, x.2, 0, .3, new(x.1, x.2, 0, y.1, y.2), 60),
/* draw sun and pot (omitted) */
Sun: y;

sign (Pot_Branch:: x, Sun:: y)
->
Signed_Branch: (x.1, x.2, x.3, x.4, x.5, x.6, neg_br(x, y)),
Sun: y;

grow (Signed_Branch:: x, Sun:: y)
->
Pot_Branch: next(x, new(x.1, x.2, x.7, y.1, y.2)
Pot_Branch: next(x, new(x.1, x.2, x.7, y.1, y.2), 4),
Graphics: polygon(x),
Sun: y if x.3 < 10
-> Graphics: polygon(x), Sun: y otherwise;

Figure 5.7: A program for drawing a photo-sensitive structure. The result
of executing the program is shown in Figure 5.8.

The program behaves in a similar manner to the earlier examples. This
time, however, the angle of each branch to the vertical is given by a random
variable with a cosine probability distribution centered on the angular differ-
ence between the current growth point and the light source. This probability
distribution is adjusted to model the presence of ambient light. The level of
ambient light relative to the output of the light source is given by the macro
bg at the top of the program. Depending on this value, the tendency of the
object is to grow towards the light. The lower the level of ambient light, the
stronger is the tendency for the object to grow towards the light source, as
one would expect.

108 Environmentally-sensitive growth...

Figure 5.8: A photo-sensitive growth object. The direction of each branch
segment is dependent upon the direction of the light source (a point source
indicated by a cross) and the level of ambient light. The six diagrams show
a growth pattern for the following levels of ambient light relative to the
brightness of the light source, respectively: 95%, 75%, 55%, 35%, 15% and

5%
germinate

Pot_Branch

Signed_Branch

Graphics

Figure 5.9: A network representing the program for generating a photo-
sensitive structure. The program is to be found in Figure 5.7.

...Jove thy neighbour. 109

5.2.3 Environmental sensitivity 3: non-self intersection

Other interesting examples of environmentally-sensitive growth are non-self
intersecting objects. The I' program, given in Figure 5.10, has certain sim-
ilarities with that given in Figure 5.1. Elements are removed from mul-
tiset Branch and replaced by four elements in multiset Maybe branch if
their generation number is smaller than six. They are discarded other-
wise. Branches from this multiset are selected by function check_start
and placed into multiset Candidate. Each candidate is checked for colli-
sions with all of the branches which have already been drawn and are now
stored in Branch_check. If a collision occurs then the candidate is discarded;
otherwise, it is drawn and placed into multisets Branch_check and Branch
to indicate, respectively, that it has been drawn and that it should act as
a seed for the next generation of branches. The result produced by this T’
program is given in Figure 5.11. A network representation of the execution
of this I' program is given in Figure 5.12.

grow + check_start + check + boom + clear + draw + old2new
{ Candidate: (0, -.9, 0, .4, 0, 40) }

grow (Branch:: x)

-> Maybe_branch : next(x, 5.323, 2),
Maybe_branch : next(x, 6.021, 3),
Maybe_branch : next(x, 0.175, 4),
Maybe_branch : next(x, 0.873, 5) if x.3 < 6

-> {} otherwise;

check_start (Maybe_branch:: x) -> Candidate: x;

check (Candidate:: x, Branch_check:: y)
-> Candidate: x,
Checked_branch: y,
Boom:1
if collision(x, y)
-> Candidate: x,
Checked_branch: y
otherwise;

boom (Candidate:: x, Boom:: b) -> {};
clear (Boom:: b) -> {};

draw (Candidate:: x)
-> Graphics: polygon(x), Branch_check: x, Branch: x;

old2new (Checked_branch:: y) -> Branch_check: y;
Figure 5.10: The program to draw a non-self intersecting structure. The

result of executing the program is given in Figure 5.10. Some of the house-
keeping functions have been elided for the sake of clarity

110 Environmentally-sensitive growth...

iz

(
\
L

Figure 5.11: A non-self intersecting structure akin to house bamboo. The
program which generates this result is shown in Figure 5.10.

Maybe_Branch

check_start

b
&/

Graphics

Candidate

ch@e Branch_check
Checked_Branch old2new

Figure 5.12: A network representing the execution of the program to draw
a non-self intersecting structure. The program is given in Figure 5.10.

...Jove thy neighbour. 111

5.2.4 Environmental sensitivity 4: combining non-self
intersection with photo-sensitivity

It is easy to combine the I' program for photo-sensitive growth with the I
program for non-self intersection. None of the functions in either I' program
are changed (except for the names of the multisets from which they get
their input and into which they place their output). The two I' programs
are then simply composed and a number of unnecessary functions removed.
The resulting I' program is shown below, with the function definitions elided
because they are unchanged. The result of running the I' program is shown
in Figure 5.13. The network interpretation of the I' program is given in
Figure 5.14.

germinate + sign + grow + check_start + check +
boom + clear + draw + old2new

Figure 5.13: A non-self intersecting, photo-sensitive object formed through
the composition of the multiset transformers for a non-self intersecting object
(Figure 5.10) and for photo-sensitivity (Figure 5.7).

5.2.5 A Cellular Automaton

Cellular automata (CA) are also examples of environmentally-sensitive sys-
tems, as the state of an element’s neighbours influence its evolution [74,
145]. To demonstrate the wide applicability of multiset transformation to
environmentally-sensitive systems, we give an example of I program which
generates a cellular automaton.

The skeleton for the cellular automaton program is shown below. The
result of executing a 1-dimensional, five state automaton with neighbourhood
1 is shown in Figure 5.15. The network representation of the program is
shown in Figure 5.16.

112 Environmentally-sensitive growth...

Maybe_Branch

Signed_Branch

ﬁb Graphics |

Candidate

Branch_check

heck
@ Boom c

Checked_Branch

Figure 5.14: A network representing the execution of the I' program to
draw a non-self intersecting, photo-sensitive structure. The skeleton of the
I' program is given in the text.

center + left + right + borders + draw + next_cell +
clear + filter + next_gen

The program executes as follows. Functions center, left and right
pick, respectively, the element to be rewritten and its left and right neigh-
bours. If the current cell is at the edge of the array (and therefore has no
left or no right neighbour), function borders adds the appropriate ‘border’
element. Function next_cell generates the new value of the given cell, while
functions clear and filter ensure that all the elements of the current gen-
eration of the automaton are rewritten before function next_gen initialises
calculation of the next generation of the automaton. Function draw draws
each cell on the screen.

5.3 Conclusions

We have shown the advantages of generative I' programs for modelling
environmentally-sensitive growth objects. We have demonstrated that en-
vironmentally sensitive growth processes can easily be modelled. Although
we used a simple and artificial example of a ramifying object, the model of
the influence of the physical environment is basically realistic. In particular,
the results shown in Figure 5.8 are a foundation upon which more sophisti-
cated models could be built. We have shown that it is possible to combine,
in a single I' program, the effects of the influence of light on the growth
process with the geometric constraints imposed by the presence of obstacles.

...Jove thy neighbour. 113

Figure 5.15: Execution of a 1-dimensional, five-state cellular automata with
neighbourhood 1.

(Left) [Comer] (Righ

New_Cell

Figure 5.16: A network representing the cellular automata program given in
the text.

This composition was straightforward. In the cellular automaton example
of Section 5.2.5, we demonstrated that I' can also capture the behaviour of
cellular automata. This example is a first step towards what we hope will

114 Environmentally-sensitive growth...

be a thorough understanding of cellular automata in the context of multiset
transformation. We leave further investigation of this topic for future work.

The I' model is data-driven. That is, the function which will next be
applied to the multiset is determined by the availability of data with the
appropriate properties. Only when boundary conditions come into play or
sequential composition is used is this freedom from communication lost. This
data-driven behaviour of the model gives rise to a number of interesting
effects. Firstly, in the case of our branching structures, it is not necessary
that all branches of a given generation be processed by all functions before
the first branch of the following generation is so passed. Rather, as long
as a branch has been processed by a function, then it can be processed by
the next. There is no need for each branch to be consumed as soon as it is
generated, and no need for the branches to be consumed in the same order
as that in which they were generated. We can therefore view I as a language
for describing asynchronous process networks whose arcs are multisets, not
streams, and whose selection of elements from those multisets is made non-
deterministically. If we wish to force a more synchronous execution model,
we can do so by including more sequential composition operators, or using
the mechanism for introducing new multisets which contain flags to ensure
the desired synchronisation. These issues are investigated in greater detail
in Chapters 2 and 3.

Chapter 6

Conclusions

This thesis contains a mixture of theory and applications. The practical part
examines ways of encoding, in multiset transformation languages (MSTLs),
a number of physically- and biologically-motivated applications. The theory
concentrates on the semantics of program composition operators (particu-
larly interleaving and parallel operators) of MSTLs. We demonstrate that
the details of interleaving or parallel operators in an MSTL greatly influence
the possible behaviours of programs and hence influence the applicability of
the language. The link between the application work and the theoretical
work is this: the applications drive the theoretical work, suggesting ways in
which current MSTLs are advantageous or deficient. The theoretical work
then concentrates on ways of retaining the advantages of multiset trans-
formation (MST) while overcoming any disadvantages highlighted by the
applications. Along the way, we find that the interaction between these two
approaches yields a number of interesting insights into what multiset lan-
guages are and what they should be. We also gain a better understanding
of what parallelism and interleaving really are and the relationship between
them. We claim that this mixed approach (theoretical computer science and
computational science) yields a useful symbiosis: we obtain a collection of
well-understood and formally-defined language constructs which we know
can be used to build real applications, of interest to the physical and bio-
logical modelling communities. By using the applications to motivate the
theoretical investigations, we therefore hope to avoid either researching the
theoretical underpinnings of a poorly-applicable model, or of concentrating
on building models using a formalism which may not be optimal, with all
the frustrations thereby entailed.

Every chapter in this thesis contains its own conclusions, which will not
be repeated here. Instead, we present a general summary of the work which
has been described in this thesis. In particular, we draw the readers’ atten-
tion to the connections between the work presented in the different chapters
and indicate the ways in which the threads of the research can be drawn
together into a tapestry. The tapestry is not complete, but the main scenes
are clear, and enough has been woven to identify the main characters and
their roles in the story.

115

116 It’s the end of the work as we know it...

This chapter is in three parts: a summary of the other chapters in this
thesis, indications of possible directions for future work and some concluding
remarks.

6.1 Summary of the chapters

While the world of multiset transformation is relatively homogeneous when
compared to, for example, the world of user interfaces, a number of vari-
ants of multiset transformation (MST) exist. Each has its own distinctive
characteristics, although all share certain similarities. While this plethora
of possibilities makes it possible to address many different issues in MST,
the disparate notations used make it more difficult to compare the different
languages and, therefore, to say something coherent about MST in general.
In Chapter 2, we presented a unified model of parallel transformation and
showed that this framework could be used both to provide an encoding for
many MSTLs and to appreciate the differences between, and the difficulties
associated with, their interleaving operators. We regard the most important
contribution of Chapter 2 to be insight into the differences between alterna-
tive forms of program context-sensitive interleaving operators, together with
the ability to generate a new operator by choosing the correct parameters for
PT. These parameters, which indicate how ‘interesting’ different reductions
are (and therefore how likely they are to occur), have both a formal and an
informal component. The formal component is manifested in the semantics
of PT, wherein more interesting reductions are chosen over less interesting
reductions, when more than one reduction is possible. The informal compo-
nent is the conceptual transparency of the notion of ‘interesting’ reductions
which enables one easily to generate the parameters, and therefore a for-
mal semantics, for a language whose program context-sensitive behaviour
is understood intuitively. As a vehicle for exploring properties of different
interleaving operators within an MSTL, we believe that PT has great value.
To justify this conclusion, Chapter 2 contains, in terms of PT, encodings of
a number of MSTLs, together with formal examination of the relationships
between them.

In Chapter 3, we investigate, in terms of PT, ways of extending MSTLs
so that a greater variety of applications can easily be encoded in them.
Our motivation comes from encoding ‘parallel’ rewriting models such as L-
systems, cellular automata, lattice-gas methods, N-body problems and many
other physical applications. We argue that our encodings, which can be seen
in Chapter 5, demonstrate that a number of extensions to MSTLs should be
made if MSTLs are to be applicable to these problem areas. In particular,
these applications require a more flexible approach to parallel rewriting with
shared contexts than that available to conventional MSTLs such as T".

Most production systems (such as L-systems) do not make it possible to
build ‘real’ programs; instead, a number of functions (or productions) are
considered implicitly composed in parallel. One might even wish to argue
that this is the whole point of production systems, viz. to leave implicit the
model’s operational details. Lacking explicit program composition opera-

...and I feel fine. 117

tors, with their associated semantics, requires that implementations adhere
to ad hoc ‘standards’ to decide which production to apply at each step. With
MSTLs, on the other hand, programs contain explicit program constructors
such as sequential or parallel composition. Each has its own formal seman-
tics, which thereby disambiguates control-flow issues and opens them up to
analysis.

However, widespread use of MSTLs in place of systems such as L-systems
will only come about if MSTLs make it possible to express such constructs
as logical simultaneity of reductions. Furthermore, most rewrites in systems
like L-systems happen in the presence of data, which are examined but not
rewritten. This is a data context, in the terminology of Chapter 3. An
example of this is the examination of neighbours in a cellular automaton
(see Chapter 3). As systems such as L-systems, lattice-gas etc. possess data
context-sensitive rewriting, our MSTL has to do so too, in order to be able
easily to encode such applications. Before the work described in this thesis
was undertaken, writing MSTL programs involving either data contexts or
explicit state update was very awkward for a programmer. For example,
programming a cellular automaton in I' requires writing a lot of code to
ensure that every array element to be rewritten has the correct data context
and that no element is rewritten more than once during a single generation
of the automaton (see Chapter 5 for examples of this). In such cases, Turing
completeness is a very poor argument for using a formalism. Rather, it
should be easy to do the things which one often wants to do.

We encode the desired MSTL extensions in PT (our unifying formal
framework from Chapter 2), by introducing new selection functions (selec-
tion functions are also explained in Chapter 2). These selection functions
allow us to express programs which delay state updates until an explicit state
synchronisation function is encountered. They also allow functions to make
use of data contexts. These selection functions allow us to draw a distinction
between parallel and interleaving operators, based upon their synchronisa-
tion behaviour in the presence of data contexts. We also argue that neither
data contexts nor explicit synchronisation have received the attention they
deserve in the MST community, perhaps because their usefulness has not be
fully appreciated. We demonstrate that our new class of languages (at least
one for every interest tuple: interest tuples are also explained in Chapter 2)
is strictly more expressive than the class which makes use of I'’s selection
function, by translating I' into a language making use of our new selection
functions and by giving an example in which our new formalism gives re-
sults which I' cannot give. With these extensions of traditional MSTLs at
our disposal, we are able to encode all of the problems which we mentioned
at the beginning of the chapter (e.g. L-systems, cellular automata etc.).

Finally, another possible advantage of the new selection functions is men-
tioned: it may be that the possible parallelism available in a multiset pro-
gram which makes use of data context might be higher than that of a program
which does not make use of data context. If this turns out to be the case in
general, it is a strong motivator for including data context in future multiset
transformation languages.

118 It’s the end of the work as we know it...

At the end of this final theoretical chapter, we draw together the work
described in both theoretical chapters by proposing a new MSTL, Goblin.
Goblin delivers a single MSTL in which the developments of Chapters 2
and 3 are incorporated. Goblin’s interleaving operator is completely context-
insensitive and recursion is specified explicitly. These properties lead Goblin
to avoid the compositionality difficulties associated with I" [20] and CGP [37],
wherein a programmer has to know which composed programs contain se-
quential composition, in order to understand what their behaviours will be.
Furthermore, Goblin also makes available data context and explicit state
synchronisations, which our work has shown to be crucial for readily im-
plementing a number of models of biological and physical systems. Goblin,
unfortunately, takes us somewhat away from the ‘production system’ spirit
of T' and CGP, in particular by making recursion explicit, but the prize is
that composed programs are, arguably, better behaved than in either I" or
CGP. The behaviour of Goblin’s interleaving composition, for example, is
identical in all cases: choose a program and reduce it by one step.

Of course, Goblin programs can still interact in strange ways if they place
data into or read data out of the same multiset(s), but this problem seems to
this author to have more to do with the lack of a sensible module or object
system than a basic semantic difficulty. If modules cannot be used to hide
data from other programs, (and object-oriented programming has taught
us that they can be so used), then interaction between context-insensitive
programs seems unavoidable.

The theoretical work, then, gives us a new understanding of the rela-
tionships between those factors (data context, explicit synchronisation, in-
terleaving, logical parallelism) which our practical investigations encourage
us to examine. Goblin possesses a collection of operators which enable us to
encode the programs which we want to encode. So far, the ‘language’ Goblin
is little more than an annotated abstract syntax; development of this into a
fully-fledged programming or modelling language is beyond the scope of this
thesis.

The second part of the thesis consists of the two applications chapters.
Chapter 5 contains the examples which we first encoded into I'. These
examples motivated the theoretical investigations of the first part of the
thesis. Chapter 4 gives an analysis, in terms of Goblin, of ways of encoding
stochastic applications into MSTLs. The examples given in both chapters
originated from a desire to enlarge the set of examples available to the MST
community. Along the way, they highlighted shortcomings over existent
MSTLs, particularly with regard to problems of recursion, data contexts and
synchronised state updates. We have already discussed these shortcomings
and the work which was undertaken to overcome them. The belief that these
shortcomings were fundamental and not cosmetic inspired the theoretical
work described in the earlier chapters, which solved the problems (with the
exception of data structuring).

Chapter 4 is an analysis of ways of harnessing probabilities to make it
possible to code stochastic applications in MSTLs, without requiring that
any additions to the language be made. This work contradicts those who

...and I feel fine. 119

claim, or imply, that stochastic non-determinism is available from MSTLs
only when an extension to the model is made (see, for example, [108]). Par-
ticular areas which were examined include influencing the choice of elements
from the multiset, the choice of functions in an interleaving composition
and control of the program’s termination. All of these choices can be made
stochastic, a claim which we highlighted with a number of short examples.
We also gave examples of Monte-Carlo integral approximation, diffusion-
limited aggregation clusters, genetic algorithms and simulated annealing, to
substantiate our claims.

Chapter 5 gives examples of environmentally-sensitive growth forms,
seeded and grown within a multiset. Our examples include photosensitive
growth forms, self-avoiding structures and combinations thereof. Most of
these forms are similar to those generated using L-systems, although our ex-
amples feature branches grown without regard to the ‘simultaneous’ growth
of branches in real organisms. In the examples given, it is possible for bio-
logically impossible situations to occur: an older branch might never develop
because it is impinged upon by a younger branch. This limitation motivated
the search for a solution to the problem, which is solved in Chapter 3.

The other main example of this, last, applications chapter is a cellular
automaton. Like an L-system, a cellular automaton features logically simul-
taneous, data context-sensitive rewrites of all cells of a particular generation.
In the current example, which is written in T', it is necessary that the pro-
grammer go through all sorts of contortions to explicitly generate the context
for each cell and then to ensure that all cells of one generation are rewrit-
ten before any of the succeeding generation. This is ridiculous. With the
extensions suggested in the theoretical half of the thesis, the situation has
been greatly improved. Furthermore, with the exception of data structures
in the multiset, all other problems which were discovered in I' as a result of
writing these example programs, were solved in Chapters 2 and 3.

6.2 Future work

Despite the general tone of optimism in many of the above remarks, every
cloud has a silver nitrate!. In particular, much work still remains to be done.
We mention here some of the unresolved issues.

6.2.1 Theoretical tasks ahead

The theoretical tasks ahead have become clearer, now that the issues of
recursion, program and data contexts and synchronous and non-synchronous
state update, have been addressed. From here, some language-design work
could take us from Goblin, which is basically an annotated abstract syntax,
into a real coordination language. We have not attempted to do this in this
thesis.

A number of theoretical issues remain in need of clarification. Firstly,
how do we formally describe non-atomic primitive functions? Functions (i.e.

ILike a silver lining, but much worse.

120 It’s the end of the work as we know it...

software components) which take a long time to produce output must be
able to be executed logically in parallel with other functions. So far, our
semantics assumes that primitive functions execute quickly enough that the
system can wait until they have produced output (or aborted or deadlocked)
before deciding what to do. Our discussion of logical parallelism in Chapter 3
still makes this (unrealistic) assumption. We hope that a formal treatment
of this issue would address the requirement that programs ‘lock’ part of the
non-contextual state while executing, without requiring other programs to
wait for the laggard.

6.2.2 Practical tasks ahead

In open systems [41], functionality can be removed from or added to the
system at runtime. We are not yet able to model this in PT. Our programs
so far bear little relationship to the software objects which we expect as
components of modern systems. Given the almost universal use of object-
orientation and openness in industrial systems, the current MST orientation
seems somewhat quaint.

It is not the intention here to give the impression that such a dynamic
model as open systems cannot a priori be described in MST (actually, it
might be relatively straightforward). Rather, such a model implies a change
in the way that we think about the nature of our programs and what it is,
precisely, that we are coordinating. These issues have not been addressed in
this thesis, for the simple reason that the motivation here leans more towards
physical and biological modelling rather than towards software methodolo-
gies and engineering.

Whatever the philosophical orientation taken, more serious implementa-
tions and applications of MSTLs are needed. In particular, large numerical,
symbolic and industrial projects must be undertaken, for two reasons.

1. To convince the wider community that MSTLs are serious alternatives
to be considered in industrial-strength problem solving.

2. To convince the MST community that the MSTL design decisions
which are being taken are the correct ones, in the sense of being con-
venient for the user, implementable and applicable. As this thesis has
demonstrated, the results of designing a model to fit the applications
are very different to (and sometimes at odds with) the results of de-
signing models without such an application-driven perspective.

It is important not to underestimate the importance of providing (or
attempting) to provide, serious implementations and applications of MSTLs.
As the development of functional languages has shown us, initally optimistic
hopes for easy and, perhaps, parallel implementations of functional languages
were shown to be unfounded. Only in the last few years have languages such
as Haskell [135] and Sisal [54] shown us that efficiency in functional language
implementations, can be realised. That it has been a harder task than many
first hoped, should cause us to be wary of claiming too much for MST with

...and I feel fine. 121

too little implementation experience. In the course of the work described in
this thesis, a number of prototype implementations of various MSTLs were
built in order to be able to run the example programs (the graphics seen
throughout this thesis are genuine, being generated by any of a number of
I’ and Goblin implementations). Building a real compiler is an interesting
challenge for the future. Issues such as scalability of implementations (and of
programs) cannot be sensibly discussed in the absence of a good, optimising,
compiler.

6.2.3 The multiset: there is no silver billet?

Throughout this thesis, we have said very little about how to structure the
data in a multiset, although we mentioned the problem in the introduction.
Currently, the multiset is a space containing only tuples, so that the rela-
tionships between, for example, cells in a cellular automaton, have to be
explicitly encoded. This is clearly unsatisfactory: the multiset, rather than
helping us to express the problem, hinders us by not allowing us to express
the structure inherent in the data. Structuring the multiset to increase the
programmability of MSTLs has become a bit of a cause celébre in recent
years, with a number of researchers addressing the issue [97, 53]. Unfor-
tunately, the problem is not yet solved to the satisfaction of all concerned,
which limits the use of MSTLs to areas where data structure is minimal
or the programmer is particularly motivated. It seems to this author that
the problems of data structuring in MSTLs can be solved if we regard the
multiset not as the mother of all data structures but as an augmentation of
the traditional repertoire of data structures. Such an approach would mean
that we could use arrays, references and so on, in addition to multisets. Mul-
tisets could then be used as ‘don’t care’ data structures while other, more
traditional, data structures could be used when data relationships are im-
portant. A combination of multisets and traditional data structures would
enable one to build random access data structures, where all elements re-
side in a multiset (and are therefore simultaneously visible to the program)
but are interconnected using traditional techniques (e.g. references), so that
accessing one element allows one quick and easy access to all of that elemen-
t’s ‘neighbours’ (for example). Although not examined in this thesis, these
issues should be investigated.

6.3 Exeunt

We have formalised a unified framework for MST called PT, into which we
have translated a number of existing MSTLs and proposed some new MSTLs.
The relationships between these MSTLs has been investigated, in terms of
PT. The investigations have lead to a better understanding of a variety of
program context-sensitive and insensitive interleaving operators. We have
examined a number of applications of MSTLs within the physical and biolog-
ical modelling fields. On the basis of these applications we have investigated

2With apologies to Ken Brookes.

122 It’s the end of the work as we know it...

extensions to current MSTLs which enable us to capture the properties that
we require in order to be able readily to encode such applications. These
properties include logically simultaneous state updates (which we hope an
implementation can turn into actual parallelism) and data context-sensitive
reductions. We have proposed a new MSTL, Goblin, which contains all the
properties that we claimed we should have. We have investigated methods
for encoding different stochastic applications within Goblin, illustrating our
claims with a number of examples from the physical modelling world. We
therefore have a formally-defined, applicable basis for programming, using
only a multiset as a data structure.

This thesis has explored some of the issues which the author believes must
be addressed if MST is to be a powerful and flexible tool for coordinating
software components. It is hoped that the formal nature of the investigations,
together with their motivation by, and application to, problems in physical
and biological modelling, are a good foundation for yet more useful models.
A number of issues remain to be resolved (see Section 6.2), but we have
made useful progress.

Multiset transformation has come a long way in the last ten years. It has
developed from a proposal outlined in a handful of papers and has become
an industry (albeit a cottage industry) and a major player in conferences dis-
cussing coordination and parallel programming. If there is one thing which
writing a thesis leads this author to believe, it is this: in order to produce a
coordination model which is of lasting use to the real world, we have to make
sure that the formalisms we produce can be used to write serious, industrial
applications. It is not enough to define a language and then to claim ‘This
is it. Can we use it?’. A language has to be designed with its applications in
mind. Such an approach might help ensure that the language can be used for
something other than for generating publications. We need MSTLs which
can be used as real programming or modelling languages, with industrial-
strength implementations, debuggers, parallelising compilers for local-area
networks (LANS) and distributed-memory, parallel, machines. To build and
test these MSTLs of tomorrow and of the day after tomorrow, we need a
collection of well-understood formal transformations and analyses. We also
need suites of large, tested, bench-marked programs. In this author’s opin-
ion, it is only by following such a route that industry and academia can
ensure that MSTLs become technology that is really used by people and is
not just another corpse, left quietly to decay, in the gutter by The Road
Ahead.

I have a dream.

Chapter 7

Samenvattingen /summaries

7.1 Nederlands

Dit proefschrift gaat over de resultaten van mijn promotieonderzoek in de
semantiek en toepassingen van een klasse van computationele modellen, die
‘multiset transformation languages’ (MSTL’s) heet. Een MSTL bestaat uit
een globale staat (de meervoudverzameling) en een aantal functies die trans-
formaties van meervoudverzameling tot meervoudverzameling leveren.

Het blijkt dat MST-achtige concepten in veel takken te vinden zijn. Om-
dat deze concepten in zoveel disciplines voorkomen, blijkt het dat MST
waardevol is. Om dit kracht bij te zetten, wordt in Hoofdstuk 1 een overzicht
van de verschillende variaties en varianten van MST gegeven. In dit hoofd-
stuk wordt ook een discussie over de relaties tussen verschillende MSTL’s van
een aantal verschillende onderdelen in de informatica gegeven. Het verhaal
probeert de gezamelijke eigenschappen van al de verschillende MST-achtige
modellen en talen helder te maken, en ook een duidelijke presentatie van hun
verschillende eigenschappen te geven. Daardoor wordt b.v. een vergelijking
uitgevoerd tussen het werk van David Sands (over semantiek) en werk dat
door Walter Fontana over de creatie van het leven gedaan is. Zo breed is het
wereld van MST: het komt overal voor.

Mijn ondezoek is een poging om MST’s nog meer waarde te geven.
Bestaande MST’s kunnen onderverdeeld worden in hoofdzakelijk twee groepen.
De eerste is een groep talen die formeel-gedefinieerd zijn (b.v. T, CGP),
maar die geen goede compilers of toepassingen hebben. De andere groep is
meer ‘pragmatisch’ gebouwd (b.v. Linda). Deze klasse heeft geen envoudige
formele semantiek, maar wel implementaties en/of applicaties. De laatste
vier jaar, was een poging gedaan om een ‘unificatie’ tussen die twee klassen
te maken, waarmee zowel formele als gecompileerde/toepassing gerichte talen
kunnen worden gebouwd. Uiteindelijk wordt er een ‘speeltuin taal’ gemaakt,
die de goede eigenschappen van beide werelden heeft. Voorbeelden van pro-
gramma’s zijn ook gegeven, die in deze taal geschreven kunnen worden.

Dit proefschift valt uiteen in twee delen. Het eerste deel bestaat uit theo-
retisch onderzoek met betrekking tot de semantiek van interleaving construc-
ties in MSTL’s. Een interleaving constructie is een soort scheduler die, op

123

124 Summaries...

een bepaald moment, kiest welke van de programma componenten worden
geéxecuteerd. Het gekozen programma (onderdeel) loopt een tijdje, waarna
de interleaving operator wederom kiest of een lopend programma gaat slapen
of dat een slapend programma wordt gewekt en gaat lopen. Dit werk wordt
in twee hoofdstukken behandeld. Het eerste hoofdstuk concentreert zich op
de classificatie en analyse van een aantal verschillende MSTL’s, terwijl het
andere hoofdstuk over een uitgebreid soort model gaat, waarin z.g. data
context te gebruiken is. Data context wordt later uitgelegd.

Als een programma uit een interleaving compositie van meerdere sub-
programma’s is gebouwd, kan de volgende vraag gesteld worden: hoe kiest
man welke programma(’s) in de volgende tijdstap geéxecuteerd kunnen wor-
den? Het blijkt dat de keuze die gemaakt wordt veel invloed op de mogelijke
executies van de hele programma kan hebben. Bij voorbeeld, het programma
dat de vorige keer gekozen was, kan altijd gekozen worden. Als alternatief,
één van de programma’s gekeusen kan worden die uit een sequentiele com-
positie van sub-programma’s gebouwd is. In hoofdstuk 2, wordt een formeel
framework gegeven waarin dit soort vragen geanalyserd kunnen worden. Dit
framework is in termen van een z. g. Structured Operational Semantics
(SOS) gedefinieerd, waarin parameters ingevuld kunnen worden. Verschil-
lende parameters geven verschillende interleaving mogelijkheden. Het basis-
idee is om te bepalen was de relatie is tussen een bepaalde soort interleaving
operator en die eigenschappen van een taal die so een interleaving operator
heeft. Interleaving operatoren die verschillend keusen maken op basis van de
gecomposeerd programma’s zijn ‘program context sensitief’. Het hoofstuk
bestaat uit een aantal voorbeelden van talen die in termen van de frame-
work beschrijven kunnen worden en zodoende de verschillende mogelijkhei-
den kunnen vergelijken. Er wordt getoond, met behulp van meervoudige
voorbeelen, dat program context sensitiviteit in het algemeen geen goede
eigenschap van een interleaving operator is.

Hoofdstuk 3 bestaat uit een studie van de invloed van data context op
de implementatie en executie van programma’s. Data context is een soort
‘beeld’ van de data dat niet van de meervoudverzameling afkomstig is en dus
voor alle sub-programma’s zichtbaar is. Af en toe moet een nieuw ‘beeld’
van het geheugen genomen worden. Dit nemen van een ‘snapshot’ heet een
‘synchronisatie’. Met data context is het veel makkelijker om modellen van
ge-synchroniseerd fysische processen te modelleren, b.v. de groei van planten
en bloemen. Men kan onze uitbreiding van interleaving met data context als
een vorm van parallellisme zien. Om te bewijzen dat dit nieuwe frame-
work (met data context) formeel meer algemeen is in vergelijking met een
framework zonder data context, wordt er een voorbeeld en een formeel be-
wijs gegeven. Het toont aan hoe sommige mogelijke antwoorden onmogelijk
worden, indien geen data context beschikbaar is. Met het bewijs wordt er
getoond hoe een ‘gewone’ interleaving in het model toegepast kan worden
(namelijk: na iedere funktie applicatie wordt er een synchronisatie gedaan).

Het einde van Hoofstuk 3 presenteert een nieuwe MSTL: Goblin. Goblin
heeft al de goede eigenschappen die in de laatste twee hoofdstukken bepaald
zijn geweest, tevens mist het de besproken slechte eigenschappen. Dus heeft

...In two languages. 125

Goblin een niet-context sensitive interleaving operator, data context en ex-
pliciete synchonisatie functies.

De rest van het proefschrift bestaat uit de meer praktische kanten van
het werk: een onderzoek naar hoe het mogelijk zou zijn om probabilistische
toepassingen in een MSTL te schrijven en een ‘teken-boek’ van voorbeelden
die uit de modelleringswereld komen.

Hoofdstuk 4 geeft een antwoord op de vraag ‘hoe kan je stochastische
programma’s in een MSTL schrijven?’. Het antwoord bestaat uit twee
delen. Ten eerste worden alle verschillende manieren beschreven om een
stochastisch programma in een MSTL te schrijven. Dit laat zien dat het
onnodig is om probabilistische primitiven in een MSTL te stoppen, omdat
in principe alles expliciet in die programma’s geschreven kunnen worden.
De tweede helft van het antwoord beschijft een aantal meer serieuze voor-
beelden uit de modelleringswereld. Dus is er niet alleen de mogelijkheid van
encodering, maar ook van de actualiteit.

Hoofstuk 5 is het laatste technische hoofdstuk. Het geeft voorbeelden van
modellen van fractale groei processen, lopende van eenvoudig (een boom)
tot meer complex (een licht-sensitieve boom waarvan de takken niet tegen
elkaar kunnen groeien). De complexe voorbeelden corresponderen natuurlijk
meer met de natuurlijke wereld. De eenvoudige voorbeelden geven een basis
waarmee de minder eenvoudige voorbeelden gebouwd kunnen worden. Dit
hoofdstuk is het laatste ‘echte’ hoofstuk, maar het gaf eigenlijk de inspiratie
voor het hele onderzoek. Met de besproken voorbeelden, is het de mening
van de auteur dat MST en MSTL’s waardevol zijn indien hun nadelen maar
overkomen kunnen worden.

Uiteindelijk komt het laatste hoofdstuk, Hoofdstuk 6. Deze bestaat
uit een aantal conclusies, open problemen en toekomstig werk. Een kort
overzicht van het hele proefschrift wordt gegeven, samen met wat meer sub-
jectief commentaar over het hele gevolgde traject.

En Bob is je oom, zoals die Engelse zeggen!

7.2 English

This summary is for all those friends and family members who have asked
or wondered ‘just what is Hugh doing in Amsterdam?’!. Computer science
(like all disciplines) is snowed under with terminology, notations and a great
deal of other ‘trade baggage’ which makes it extraordinarily difficult for a
lay-person to understand what all of these people are talking about. An
academic thesis is particularly prone to this difficulty being, as it is, an in-
depth, technical study of a very specialised area, written by someone who is
probably not yet experienced enough to be able to present the most difficult
material in a clear way. The combination of these two properties frequently
leads the non-specialist reader astray. This section constitutes an attempt
to explain what I have been up to here in a way which, I hope, those dearest
to me can understand.

IThis is a question I have asked myself many times.

126 Summaries...

This thesis concerns itself with investigations of a class of computer lan-
guages called multiset transformation (MST) languages (MSTLs). The in-
vestigations fall, broadly, into two main areas. Firstly, textually speaking,
come the theoretical investigations of MSTLs in Chapters 2 and 3. These
chapters are mathematically the most dense of the thesis, concerning them-
selves, as they do, with very abstract models of what constitutes a certain
kind of computation. The second ‘half’ of the thesis consists of investigations
of applications for MSTLs, about which I shall say more in due course.

The theory of MSTLs is a mathematically-precise description of the way
in which computer programs, written in these languages, will execute. That
is, for an MST program applied to a particular state (a state is just the
contents of part of the computer’s memory at a particular moment), the
mathematical description will tell us precisely the state (or states: there
may be more than one possible) which can follow from the current one.
From each new possible state, we can calculate what the next state(s) from
that can be. In this way, given the initial state of the program, we can cal-
culate all possible sequences of states which the program can reach. We can
therefore say that, in some sense, the meaning of the program is given by
the way in which it can pass from state to state. In this thesis, the mathe-
matical descriptions are given in a form known as a Structured Operational

Semantics (SOS).

Chapters 2 and 3 concern themselves with theoretical issues. In Chap-
ter 2, we give an SOS into which parameters can be inserted. Depending
upon the choice of parameters inserted, it is possible for the semantics(the
SOS) to describe a great variety of different languages. This chapter mainly
concerns itself with interleaved programs. If two program executions are in-
terleaved then (informally), at every moment one of them will be executing.
They will not both be executing at the same time, but each can stop and
let the other take over from time to time. This is essentially the same as
what one does when trying to do two jobs ‘at the same time’: do a bit of the
first, then some of the second, then more of the first etc. Many computer
programs execute this way because most computers have a single micropro-
cessor but are trying to do several things at once (e.g. draw a picture on the
screen while following the operator’s typing while printing a document, etc.).
All this prompts the question: how do we choose which task to work on at a
given moment? In Chapter 2, we show how our theoretical framework (our
parameterisable SOS) can be used to capture a number of different possible
strategies for choosing which program to execute next. Our framework en-
ables us to compare different approaches in a formal way. The investigations
yield some insight both into new ways in which programs can be executed
and into how the old ways are related to each other.

The second theoretical chapter concerns another class of program, where
(i) programs have to look at some part of the state which they are not
going to change (we call this data context) and (ii) several programs wish to
execute together, rather than one at a time. This latter property is called
parallelism. For many important application areas for computers, it is much
easier to write our programs if we have these two properties at our disposal

...In two languages. 127

than if we do not. We give examples of such programs throughout Chapters 3
and 5. MSTLs have not, until this work, possessed both of these properties,
so it is interesting to see the useful things that they can do once they are
extended so as to have them.

The difference between interleaving and parallelism is subtle but funda-
mental, when data context is present. We illustrate the distinction. Imagine
that two cars are driving in opposite directions along a road and are travel-
ling towards one another. In front of each car is a mad cow, which is moving
erratically and very slowly along the road. Both cars wish to overtake the
cows. What could happen when the cars try to overtake clearly illustrates
why interleaving and parallelism are not always the same. Imagine that both
drivers overtake using the following rule (often used by lazy drivers) ‘if the
road is clear, overtake immediately’. Imagine also that the drivers of both
cars perform their observations of the state of the road at the same time.
Both drivers will then start to overtake immediately, with the result that an
accident is possible. So, even though both drivers ‘look before they leap’,
what they have seen represents the state of the world in the past. They
are observing and reacting simultaneously and therefore in parallel. Now,
consider an alternative scenario in that one of the drivers has to perform her
observation before the other one, but the observations can happen in any
order. The driver who observes first will then immediately begin to overtake.
The other, who performs her observation later, will then see that the other
driver is already overtaking and will not attempt to overtake. No accident
can result (assuming (i) that the first driver reacts immediately after observ-
ing the road and (ii) this action is immediately visible to the other driver).
For those of you who have driven in the USA, notice that this corresponds
exactly to the problems raised at a crossroads, where the car arriving first
has priority. If several cars arrive in any order, no problems will result (this
is interleaving). However, if two cars arrive at eractly the same moment,
everyone will give way to everyone else and traffic will grind to a halt (this
is parallelism, but not very productive parallelism).

At the end of Chapter 3, a new MSTL is presented. Christened Goblin
(because it’s small, ugly and has teeth), the language attempts to avoid
the problems of contemporary MSTLs, which were described in Chapters
2 and 3. The result is a language possessing (arguably) a well-behaved
interleaving operator and awareness of data context. The former avoids
certain difficulties suffered from by languages such as I' and CGP. The
latter (awareness of data context) makes it possible for the programmer
to clearly see exactly where parallelism and interleaving can be used in an
implementation and enables her to specify which of these she wants to use
and when.

Chapter 3 represents the last of the theoretical chapters (whew!). The
rest of the thesis (with the exception of the conclusions) concerns itself with
more practical issues. Chapter 4 asks the question ‘Can we encode stochastic
applications in MST?’. The answer is ‘Yes’; we give examples showing a
number of ways in which someone can write such programs in an MSTL. We
isolate six different approaches one might wish to take, giving examples of

128 Summaries...

how to encode each. At the end of the chapter, we give a few larger examples
to show how our ideas can be applied to ‘real’ examples. The examples are
still small, but represent examples of problems that are of interest to the
physical modelling community.

Chapter 5 is a picture-book of examples of biological models built using
MST. Various programs are given, starting with the simplest model (a frac-
tal tree) and ending with a model of photosensitive (light-sensitive) growth
of an organism whose branches cannot cross each other. The latter example
corresponds more closely to growth in the natural world, while the former
merely illustrates the principles underlying the more complex examples. At
the end of the chapter, we give an example of a cellular automaton; a partic-
ular form of environmentally-sensitive growth which takes place on a lattice
(a grid). Cellular automata are widely used in the physical modelling com-
munity to investigate complex emergent effects associated with interactions
between simple entities. Examples include the macroscopic effects caused
by gas molecules colliding with each other (e.g. sound transmission) and
models of animal population growth and decay (the most famous example
of which is Conway’s Game of Life).

The thesis concludes with Chapter 6, which sums-up the work which has
been done, the results obtained and the possible avenues for future research.
We end on a philosophical note, with a dream of a better tomorrow.

And that is the whole egg-eating, as the Dutch say.

Appendix A

Proofs

This appendix contains three inductive proofs. The first two prove propo-
sitions stated in Chapter 2, while the third proves a proposition stated in
Chapter 3.

All the proofs are written in Lamport’s structured proof style, introduced
in [89]. This proof style makes use of a natural-deduction [99] style of proof,
augmented with a numbering scheme which emphasises the proof’s structure.
The level of indentation is indicated by a number within angle brackets, thus:
(x). Numbers after the angle brackets indicate the current line number.
Discharging of assumption number n at level x in the proof is written (x
): n. References to other lines, for example when justifying a deduction step,
always refer to the nearest line with that number before the current line.

A.1 T to PT proof

We repeat and prove Proposition 1.

Proposition 10 (Correctness of the translation) Our translation of T into PT is
correct. Formally, and writing —p as the I' transition relation and —> as the PT
transition relation, we have:

VP,Q,M,N. (P,M)—p(Q,N) iff ([P],M)="([Q],N)A
(P3Q>_)FM iff <|IP]]7M>S+<67M>

The proposition is formalised below and the proof given by induction over the struc-
ture of the transition relation.

Our proof is in two parts. The first part is a proof that the proposition holds for
all simple ' programs. Simple I' programs contain no sequential composition [65]. The
second part extends the result to all non-simple programs.

A.1.1 Simple programs

Base case: primitive functions.

Successful primitive function application.

(1)1. Prove ((B, A), M) —r ((B, A), N) iff

o +
(B, A,8p)*, M) CVEEVLRT (g 4 sp)*, Ny

(2)1. Assume ((B, A), M) — ((B, A),N).
129

130 Appendices...

+

: (5. 4,5p)"

y1. 3m C M.B(m) A N = M[A(m)/m], Assumptlon (2) and I SOS.
succ

)2. ((B,A,Sp)*, M) = ie > (B,A,Sp)*,N), from (3)1 and PT SOS.

)3, (e 31;:c (B,A,Sp)*,N) (O’S) ((B,A,Sp)*,N), from PT SOS and if < succ.
o)t

V. (B, A,Sp)*, M) CUERIELT (g 4 L)+ N,

from (3)2 and (3)3 and transitivity.

) .

+
<(B7A78F)*3N>'

A(;ﬁ)/m] Assumption (2) and PT SOS.
N), from (3)1 and T’ SOS.

Unsuccessful primitive function application.

s s o +
(1)2. Prove (B, A), M) —sp M iff (B, A, 8p)*, My THEEAD@T hpy
(2)1. Assume ((B, A), M) —1 M.

fail,fail)(0,00)"
Prove ((B,A,SF)*,M>(alssal)(Oi>) (e, M).

y1. =3Im C M.B(m), Assumption (2) and I" SOS.
(fail,fail) , fail

)2 (B, A, Sp), M) TS (€T (B, A,), M), from (3)1 and PT SOS.

al [es]
)3. (¢ > (B,A,Sp)*, M) (O’z) (e, M), from if > fail and PT SOS.
)
)

(succ,succ)(0,00)
4. <(BaA78F)*aM> — g ((BaAysl")*7N>a
from (3)2 and (3)3 and transitivity.

(fail, fall)(0:>oo) (e,M).

1
g
=
o
=
S
[}
—

)", M)
Prove ((B, A), M) — (B,A),M

3 7 C M.B(m), Assumption (2) and PT SOS.
3)2. {((B,A),M) —r M, from (3)1 and I" SOS.
3 . D.

5'9

Inductive case: interleaved compositions of simple programs. If a primitive function
in an interleaved composition of simple programs is applicable, then it will be applied in
preference to an inapplicable primitive function.

Successful simple interleaving.

(1)3. Prove (P4 Q,M) —r (P +Q,N) iff
(succ, SuCC)(0:>oo)

([P11I1[QT, M) ([PTII1'[QT, N).

(2)1. Assume 1. (P, M) —sp (P, N) iff ([P], M) T2S200 D p vy,
(Q, M) —sr (@, N) iff ([, M) T ERVELT (g, N).
(P+Q,M) —p(P+Q,)

2.
3.
p (succ,succ)(o, oo)

Prove ([P][I[Q], M) = = "= ([PIII[Q], N).

(3)1. (P,M) —p (P,N) or .
(Q,M) —1 (Q, N), Assumption (2):3 and I’ SOS.
(3)2. WLOG, assume (P, M) —p (P, N).
(3)3. ([P], M) (sucgucc)(o,:oo) ([P], N}, Assumption (2):1 and (3)2.
(a1 qPLINgL. 20 (SUEEERCT ([P ||| [QD), V), from (3)3 and PT SOS.
(3%5. Q. E. D.)
(2)2. Assume 1. (P, M) —sp (P, N) iff ([P], M) F2028809 @) PN
2. (@, M) — (Q, N} iff ([Q], M) “*25"VCT (), Ny

(succ,succ)(0,00)

+
s.(Priel M) = =" ([P1I[Q],N).

...the gory details. 131

Prove (P +Q,M) —p (P +Q,N).
(3)1. ([PL, M) T EEOCE (P, Ny or
([Q], M) (IQ], N}, Assumption (2):3 and PT SOS.

(succ,succ)(0,00)

(3)2. WLOG, assume ([P], M) = =" ([P],N).
(3)3. (P,M) —p (P,N), Assumption (2):1 and (3)2
(3)4. (P+Q,M) —p (P+ Q,N), from (3)3 and I" SOS.
(3}5. Q. E. D.

(succ,succ)(0,00)
> >

Unsuccessful simple interleaving.

(fall fall)(o oo)

(1)4. Prove (P + Q,M) —r M iff ([P] ||| [Q], M) M)

fail,f l oo
(2)1. Assume 1. (P, M) —p M iff ([P], ary 3252 HQep)®

2. (Q, M) —p M iff ([Q], M)
(fail,fail)(0,00)T
Prove (qrriien, My = "="""=" (e M).
. {P,M) —1 M, Assumption (2):3 and I" SOS.
(fail fail)(0,00)T"
= =

(€
(e, M).

(faigail)(o,g) (e, M).

[P1, M) (e, M), Assumption (2):1 and (3)1.

Q,M) —p M, Assumption (2):3 and I" SOS.

(fail, fail)(o o0) T
=

2.
3.

w W ww w
\/\/\/\/\/\/

(
(

4. ([Q], M) (e, M) Assumption (2):2 and (3)3.
(

(fail, fall)(o oo)
5. ([P1I [[Q]] M) = (e, M),
from (3)2 and (3)4 and fail < sync and PT SOS.
.Q.E.D

(2)2. Assume 1.

(
(
(
(
(
(3)6
)

. . o +
(P,M) —sp M iff ([P], m) PHEED@DT
fail fail)(0,00)t
Q. M) —sp M iff ([Q], M) ¢ 2 (e).
S

(fail, fall)(o oo)
[PTIQT, M)~ "= (e, M).
Prove (P + Q,M) —p M.

fail fail +
([P], M) (a1:,>a1)((L‘Og) (e, M), Assumption (2):3 and PT SOS.
(P, M) —p M, Assumption (2):1 and (3)1.
[

fail,fail)(o,00)™
QJ, M) (i)(0’:>) (e, M), Assumption (2):3 and PT SOS.

) —71 M, Assumption (2):2 and (3)3.
+Q,M) —p M, from (3)2 and (3)4 and I" SOS.
E

A.1.2 Non-simple programs

Inductive case: sequential compositions.

Leftmost program in sequential composition is applicable.
(1)5. Prove (Qo P,M) —r (Qo P,N) iff
(suc:c,suc:c)(o,oo)Jr
(rPrsfel M) = =

(2)1. Assume 1. (P,M) — (P, N) iff ([P], M)
2. (Qo P,M) — (QoP,N).

Prove (1P] 3 [Q], 1) 220"

(IP)51QLLN)-
(succ:,s>ucc)(°£>'°) ([P], N).

(P15 <1, N>

(3)1. (P,M) —1 (P,N), AssurJrrlption (2):2 and T SOS

(3)2. ([P], M) FUEE O CT 1p] N, Assumption (2):1 and (3)1.

égg (P13 11 M) (suce,3ue)(©) " 1p] 5 [Q]), V), from (3)2 and PT SOS.
(2)2. Assume 1. (P, M) —x (P, N) iff ([P], M) (suce,guce)Q.0)™ ppy .

132 Appendices...
+
2. ([P]3[Q), M) T EROLY
Prove (Qo P,M) —1 (Qo P,N).

o +
)1 ([P], by PSS Q)

(P15l N)-

([P], N), Assumption (2):2 and PT SOS.

. (P,M) —p (P, N), Assumption (2):1 and (3)1.

. (QoP, M) —>F (Q o P,N), from (3)2 and I SOS.

-Q.E

Switch to rightmost program in sequential composition.

(fail,semi)(o,oo)+
> >

(1)6. Prove (Q o P,M) —p (Q, M) iff ([P] 5 [Q], M)
(fail,e)(0,00)T

(IQl, M)

(2)1. Assume 1. (P, M) — M iff ([P], M) (e, M), for some c.
2. (Qo P,M) —1 (Q,M).

(fail,semi)(o,oo)Jr
Prove (pP1sfel, M) = = =" ([Q], M).
. (P,M) —p M, Assumption (2):2 and I" SOS.
(fail,e)(0,00)")
[P],M) =" "= (e, M), for some ¢, Assumption (2):1 and (3)1.

|
([P]31Q], M) (faﬂ:’s>e“‘l)(°’:>°°)+ (e 3[Q], M), from (3)2 and PT SOS.
|
(

w

e3[Q], M) ‘EX ([Q], M), from (3)3 and PT SOS.

(fail,semi)(0,00)
[PlslQl, M) ~ "="""=" ([Q],M),
from (3)3 and (3)4 and transitivity.

3
3)2
3
3
3)5.

3)6. Q. E.D
2. Assume 1.

= 5% X o o =
IS

(
(
(
(
(
(
)

fail,c)(0,00)T
(g’cxg) (e, M), for some c.

P,M) —p M iff ([P], M)

(fail,semi)(0,00)

+
[Q, M) " ="""=" ([Q],M).

+
1. ([[P]],M) = =" (e, M), for some ¢, Assumption (2):2 and PT SOS.
ssumption (2):1 and (3)1.
Q, M), from (3)2 and I" SOS.

8x
==
=l
s
TLIES
2

Inductive case: interleaved compositions of non-simple programs. A sequential com-
position of functions will be reduced in favour of an inapplicable primitive function, if both
the sequential composition and the primitive function are in an interleaving composition.

Successful non-simple interleaving.

(1)7. Assume P is not simple.
Prove (P + Q,M) —r (P + Q,N) iff

(succ,succ)(o,oo)+
(Ierirel M) = =" (PR N)-
(2)1. Exactly the same as for simple programs.

(2)2. Q.E. D

Unsuccessful non-simple interleaving.

(1)8. Assume P is not simple.
Prove (P + Q,M) — (P'+ Q, M) 1ff
(P11 11, vy P2V ((py i (),), where P4 P.
(2)1. Assume 1. (P, M) —sp (P', M) iff ([P],) THEED @ 1pry apy,
2. (P+Q,M) — (P' + Q, M), where P! # P.
fail o)t
Prove (P] || [Q], i) “¥25"V X" (1p1) | g,).
(3)1. (P,M) —p (P', M), Assumption (2):2 and I' SOS
(fail,semi)(o,oo)""
(3)2. ([P}, M) " T="""=

(3)3. ([P] Il [@], M)

([P'], M), Assumption (2):1 and (3)1.
(fail,semi)(0,00)
= =" ([P, M),

...the gory details. 133

from (3)2 and succ = semi and PT SOS.

(3)4. Q. E. D. .
(2)2. Assume 1. (P, M) —sp (P, M) iff ([P], M) FHEZ™DEDT prp ppy.
fail,semi)(0,00)T
2. ([P] || [Q), M) FH=2VEDT ([P) [,).
Prove (P + Q,M) —p (P' +Q, M).
(fail,semi)(o,oo)Jr

(3)1. ([P], M) = =" ([P'], M). Assumption (2):2 and PT SOS.
(8)2. (P,M) —p (P', M), Assumption (2):1 and (3)1.

(3)3. (P4 Q,M) —p (P'+Q,M), from (3)2 and T SOS.

(3)4. Q. E.D.

This concludes the proof. O

A.2 CGP to PT proof

We repeat and prove Proposition 2.

Proposition 11 (Correctness of the translation) Our translation of CGP into PT
is correct. Formally, and writing — o p as the CGP transition relation and —> as the
PT transition relation, we have:

VP,Q,M,N. <P7M> _)CGP(Q7N> iff (H:P]],M>3+ <|[Q]]3N>/\
(P,Q) —cgp M iff ([P],M) =" (e, M)

Proof by induction over the structure of the transition relation.

As above, our proof is in two parts. The first part is a proof that the proposition holds
for all simple CGP programs. Simple programs contain no sequential composition [65].
The second part extends the result to all non-simple programs.

A.2.1 Simple programs

Base case: primitive functions.

Successful primitive function application.
(1)1. Prove ((B,A), M) —cgp (B, A), N) iff .
(B, 4,5p)°, M) HESEOE)
(2)1. Assume ((B, A), M) —qqp ((B,A),N).

(suc:c,suc:c)(o,oo)+

Prove ((B, A,Sp)*, M) == =" ((B,A,Sp)*,N).
Im C M.B(m) A N = M[A(m)/m], Assumption (2) and CGP SOS.

((BaAaSF)*aN>

(3)1.
(3)2. (B, A, Sp)*, M) CUE2 (%1 (B, 4,8p)%, V), from (3)1 and PT SOS.
succ oo
(3)3. (¢ 5 (B,A,8p)",N) &2 (B, 4,8p)7, N), from PT SOS.
(3)4. (B, A, Sp)*, M) TR0 (5 4 1)+ N,
from (3)2 and (3)3 and transitivity.
(3)5. Q. E. D.
00) T
(2)2. Assume (B, A,Sp)*, M) SUE2DLT (g 4 50 V).
Prove ((B, A), M) —qcgp (B, A4), N).
(3)1. 3m C M.B(m) A N = M[A(m)/m], from Assumption (2) and PT SOS.
(3Y2. (B, A), M) —cgp (B, A), N), from (3)1 and CGP SOS.
(3)3. Q. E. D.
Unsuccessful primitive function application.
fail fail)(o,00)™
(1)2. Prove (B, A), M) —cqp M iff (B, A,8p)*, M) CH2E D@y
(2)1. Assume ((B,A),M) —qqp M.
(fail,fail)(0,00)T
Prove ((B, A,Sr)*, M) = =" (e, M).

134 Appendices...

1. =3m C M.B(m), Assumption (2) and CGP SOS.

3)
f 'l,f il fail
3)2. (B, A,5p)*, M) CHEEY (T (B 4,807, M), from (3)1 and PT SOS.
fail
3)3. (¢ > (B,A,Sp), M) =" (¢, M), from PT SOS.
3)
3)

(0,00)
fail,fail oo
4. (B, A,Sp)*, M) (a1:a1)(Oﬁ) (e, M), from (3)2 and (3)3 and transitivity.
Q. E. D.

(2)2. Assume (B, A, Sp)*, My THLED@2) (o py
Prove ((B, A),M) —rcaqp M.

3)1. C M.B(m), Assumption (2) and PT SOS.

3)2. {((B,A),M) —cgp M, from (3)1 and CGP SOS.

3 .

SE

Inductive case: interleaved compositions of simple programs. This works in the same
was as for I'.

Successful simple interleaving.

(1)3. Prove (P+Q,M) —cqgp (P +Q,N) iff

(succ,succ)(0,c0)

(eriel) == ([Pl N). N
(2)1. Assume 1. (P, M) —qgp (P, N) iff ([P], M) $2222e0@)

(
2. (Q, M) —cgp (@ N) iff ([Q], M)
3 (P +QM) —cgp (P+Q,N).

Prove ([P] | 1], M) 2S5 oy ror, vy,

3)1 <P,M> —)CGP (P, N) or
(Q, M) —cqgp (@, N), Assumption (2):3 and CGP SOS.
2. WLOG, assume (P, M) —cqp (P, N).
([P, M) BUEEC)T b)) Ny, Assumption (2):1 and (3)2.

+
4. ([P] || [Q], M) CHER LI (1p] || [Q]), V), from (3)3 and PT SOS.
5. Q. E. D.

(171, N).
(IQl, N).

(s1.1cc:,s1.1c<:)(0,oo)+
— BN

ww w w
—— — ~—
hed

(succ,s1.1c<:)(0,oo)Jr
— —

~ o~ o~~~

(2)2. Assume 1. (P, M) —qqp (P, N) iff ([P], M)
2. (@, M) —cgp (@ N) i ([Q], M)

3. ([P] || [Q],) X E2EX (1P | [Q],).
Prove (P +Q,M) —cgp (P +Q,N)
(3)1. ([P], My THERCOCE) (1),) o
([Ql, M) ([@Q], N), Assumption (2):3 and PT SOS.
2. WLOG, assume ([P], M) (sucgucc)(o,:oo) ([P], N).
3. (P,M) —cqgp (P, N), Assumption (2):1 and (3)2.
4. (P+Q,M) —agp (P +Q,N), from (3)3 and PT SOS.
5. Q. E. D.

(P,)
(IQl, N)

(succ,succ)(o,oo)+
== =

(succ,succ)(0,c0)
— EEN

Unsuccessful simple interleaving.

i1 £8il)(0 o1t
(1)4. Prove (P + Q, M) —cgp M iff ([P] ||| [Q], M) (failfail)(0.c0)

(fall fall)(o oo)

(e, M)
(e, M).
(e, M).

(2)1. Assume 1. (P,M) —qogp M iff ([P], M)
2. (Q, M) —cgp M iff ([Q], M)
<P+Q,M> *)CGP M

(fail,fail)(o,oo)+
Prove ([P11I1[QT, M) (€, M).

1. (P,M) —cqgp M. Assumptlon (2):3 and CGP SOS.

2. ([P], ary THLIAD@T 4 tion (2):1 and (3)1.
3. (Q, M) —>CGP M, Assumptlon (2):3 and CGP SOS.
M)

(fall,fall)(o,oo)
> >

(fail,fail)(o, oo)+
4([QLM) " = "=" (s

w ww w
\/

~

(
(
(
(

, Assumption (2):2 and (3)3.

...the gory details. 135

(fail, fall)(o oo)
(3)5. (1P 1Q),) *HEL (e, M),
from (3)2 and (3)4 and fail < sync and PT SOS.
(3%6. Q. E. D.
. . o +
(2)2. Assume 1. (P, M) —sogp M iff ([P], i) FHEED@T
fail,fail)(0,00)T
2 (@, M) —scgp M i (1] M) PHEERVEST (o ar).
(fail, fall)(o o)
3. ([P]I[Q], M) " "= (e, M).
Prove (P + QM) —cgp M.
(fail fail)(0,00)"

(3)1. ([P], M) . =" (e, M). Assumption (2):3 and PT SOS.
(3)2. (P,M) —cqp M Assumptlon (2):1 and (3)1.

(3)3. ([Q], M) (fall fall)(o oo (e, M), Assumption (2):3 and PT SOS.
(3)4. (Q, M) *)CGP M, Assumptlon (2): 2 and (3)3.

(3)5. (P+Q,M) —cqgp M, from (3)2 and (3)4 and CGP SOS.

(3)6. Q. E. D.

A.2.2 Non-simple programs

Inductive case: sequential compositions.

Leftmost program in sequential composition keeps going.
(1)5. Prove (Qo P,M) —cqp (Qo P,N) iff
(succ,succ)(o,oo)""
(rPrslel, M) = "=

(2)1. Assume 1. (P,M) —cqp (P, N) iff ([P], M)
2. (Qo P,M) —cqgp (Qo P,N).

+
succ,succ)(0,00
Prove (P15 [Q], M) (SRR ([P] 5 [Q], N).
P,M) —cgp (P, N), Assumption (2):2 and CGP SOS.

<[[P]],M> (sucgucc)(o,zoo)

<[[P]] 3 [Q1, M)
Q. E.D.

(P15 IRl Ny
(succ,s1.1c<:)(0,oo)Jr
— —

(1P, N).

([P], N}, Assumption (2):1 and (3)1.
(ueC,8ue @)™ ([P] 5 [Q]), V), from (3)2 and PT SOS.

ww w w

vvvv

(
(
(
(
) (succ:,s>ucc)(0,$oo)+

(2)2. Assume 1. (P, M) —qoqp (P, N) iff ([P], M)

2. ([P]3[Q], M) B EZOCDT (1p] 5 0], N).
Prove (Qo P,M) —cqgp (Qo P,N)

o +
)1, ([P],) FUeESCQp)

(P, N

([P], N), Assumption (2):2 and PT SOS.
2. (P,M) — P, N), Assumption (2):1 and (3)1.
CGP
3. (Qo P,M) —cqgp (Qo P,N), from (3)2 and CGP SOS.
(3%4. Q. E. D.

Switch to rightmost program in sequential composition.

3
3
3
3

fail (6,001 F
(1)6. Prove (Q o P,M) —agp (Q, M) iff ([P] 3 [Q], M) (al:S>eml)(0i>)
(2)1. Assume 1. (P, M) —qcgp M iff ([P], M) (fall c)(o o)t
2(QoP,M) —cqp (@M
fail,semi)(0,00
Prove ([P s1Q], M) (=)(2) ([Q], M).
1. (P,M) —cgp M, Assumption (2):2 and CGP SOS.
(fail, c)(O o)t)
[P], M) " = (e, M), for some ¢, Assumption (2):1 and (3)1.
[P151Q1, M) o L2 (©0)" (. 101, M), from (3)2 and PT SOS.
s [Q1, M) ‘2= ([Q], M), from PT SOS.

(fall semi)(0,00)
(P15 [Q], M) 22" (1Q1, M),
from (3)3 and (3)4 and transitivity.
6. Q. E. D.

(I, M)

(e, M), for some c.

3
3)2. (
3)3. ¢
3)4. (e
3)5. (

(
(
(
(
(3)5.
(

vvvvvv

3

136 Appendices...

(fg,c)(mgﬁ

(2)2. Assume 1. (P,M) —cgp M iff ([P], M) (e, M), for some c.

2. ([P]3[Q], by FHiLEemD Q)"
Prove (Q o P,M) —cgp (@, M)

(31, ([P], 1) RO
(3)2. (P,M) —cqgp M, Assumption (2):1 and (3)1.
égg . &Q Ic;P],)M) —rcoqp (@, M), from (3)2 and CGP SOS.

(IQl, M).

(e, M), for some ¢, Assumption (2):2 and PT SOS.

Inductive case: interleaved compositions of non-simple programs. Successful prim-
itive functions are always chosen over reductions of inapplicable non-simple programs.
If neither program in an interleaving composition is applicable, then as many left-hand
sides of sequential compositions as possible will be synchronously rewritteen (discarded),
in preference to discarding a primitive function.

Applicable non-simple interleaving.

(1)7. Assume P is not simple.
Prove (P + Q, M) —cgp (P + Q,N) iff
(succ,succ)(o, oo)

([P1INQYL M) = "= ([P]II[Q], V).

(2)1. Exactly the same as for simple programs.

(2)2. Q. E.D
Inapplicable non-simple interleaving. We have two cases.
(1)8. Assume 1. P is not simple.

2. @ is simple.
Prove (P + Q,M) —qcgp (P’ +Q, M) iff

. . o +
(P [Qa0) =5V [Py (), 21), where P 7 .
(2)1. Assume 1. (P, M) —saqp (P', M) iff ([P], M) (falgem)(:’:»“) ([P'], M.
2. (Q, M) —ggp M iff ([Q], M) FHEIHDVEDT

3. (P+Q,M) —cgp (P +Q M), Where P’ ;é P.
(fail,semi)(o, oo)
Prove ([P || [Q], M) = "="""=" ([P']l[Q], M).
<3>1. <Q,M> —CGP MA
(P,M) —qcgp (P',M) A P' # P, Assumption (2):3 and CGP SOS.
(fail,semi)(0,00)
2. ([P], M) B =

) ([P'], M), Assumption (2):1 and (3)1.
y3. ([Q], M) (e, M), from Assumption (2):2 and (3)1.
)
)

3

5 (fail:,f>ail)(og)+
(fall semi)(o, oo)

3)3[P1 I [IQ]] M) =" ([P'TII[Q]. M)

from (3)2 and semi > fail and PT S

3)4. Q. E. D.

(2)2. Assume 1.

(
(
(
(
| (fail:,s>emi)(0£>°<>)Jr (IP'], M).
(e, M).

QM) —sogp M it ([Q), M) FHEESD)

(fail,semi)(o,oo)""
3. ([P1I[e], M) " = "=
Prove (P —l— Q,M) —cqgp (P+Q,M

(fail,semi)(0,00)
L([Pl,M) = "= ([P'], M),
Assumption (2):3 and (1):1 and PT SOS.
2. (P,M) —qcgp (P',M) A P' # P, Assumption (2):1 and (3)1.
(fail,fail)(0,00)T
ARlLM) T =TT =" (e, M),
Assumption (2):3 and (1):2 and PT SOS.
-A{Q,M) —cgp M, Assumption (2):2 and (3)3.
<P—|—Q,M) —cgp (P +Q,M), from (3)2 and (3)4 and CGP SOS.
. Q. E.
(1)9. Assume 1. P is not simple.

2. @ is not simple.

o~ o~

(Phiret, m).

...the gory details. 137

Prove (P + Q,M) —cqp (P’ +Q', M) iff
(fall sem1§0 o)

(IPNINQT, M) (IPeT Mf) .Vihere.P'ip_Fand Q#Q.
(2)3. Assume 1. (P, M) —saap (P, M) iff ([P],) TRV 1y .

2. (Q,M) —sop (@ M) iff ([Q], 1) “HEEVED 10y),
3. (P+Q,M) —qcgp (P +Q',M), where P' # P and Q" # Q.

fail semi)(0,00
Prove ([P1 I [Q1, M) " ZEVESD (@ | (@1, M),
)1 <P,M> —)CG (MHN
}3—’CGP (Q', M) AP’ #P/\Q' #Q,
Assumptlon (2):3 and CGP SO
[P], ary THLEEmDQ@0 T oy A mption (2):1 and (3)1.

(
3. ([Q], M)) i (IQ'], M), Assumption (2):2 and (3)1.
£ (PN QL M) ELEmD QR 1pr) | [Q'], M),

from (3)2 and (3)3 and semi < sync and PT SOS.

2.

(fail,semi)(0,00)
= =

3
3
3

vvvv

3)5. Q.E.D

(2)4. Assume 1.

(
(
(
(
) (feileend) @) 1oy apy.
([Q'1, M)

(P,M) —cgp (P', M) iff ([P], M)
2. (Q, M) —cgp <Q’,M> }ff<[[Q]],M>
s (AP IQL,) (Feilgenb) Q0™ o1y || [@1, M),

where an, .
Prove (P + Q, M) —>CGP (P'+Q',M).

. ([P], M) (fa:Ll:seml)(o:oo) ([P'], M), Assumption (2):3 and PT SOS.
P,M) —cqgp (P',M) A P" # P, Assumption (2):1 and (3)1.

A
- A[Q], M) (fall:s>em1)(0£>oo) Q']l, M). Assumption (2):3 and PT SOS.
A{Q, M) —cgp (Q', M) Assumption (2):2 and (3)3.

(P+Q,M) —cogp (P'+Q',M), from (3)2 and (3)4 and CGP SOS.
E

(fail,semi)(o,oo)+
> >

This completes the proof. O

A.3 T to PT proof

We repeat and prove Proposition 9.

Proposition 12 (Correctness of the translation) Our translation of T into PT is
correct. Formally, and writing —p as the I' transition relation and = as the PT
transition relation, we have:

VP,Q,M,N. (P,M)—r (Q,N) iff ([P],M)="([Q], N)A
(P,Q) —1p M iff ([P],M)=" (e, M)

Proof by induction over the structure of the transition relation.

As above, our proof is in two parts. The first part is a proof that the proposition holds
for all simple I" programs. Simple I' programs contain no sequential composition [65]. The
second part extends the result to all non-simple programs.

This proof closely mirrors that of Proposition A.1, to which we refer the reader. The
difference between the two proofs comes about because primitive function application
using S¢1 and Sgo require a state synchronisation after every application of a primitive
function.

A.3.1 Simple programs

Base case: primitive functions.

Successful primitive function application.

138 Appendices...

(1)1. Prove ((B,A), M) —r ((B,A),N) iff

(((Ba A, SGl)s!)*’ (M’ M’ 0))

; +
PRI (B, 4, Se0)" (N N,0)
(2)1. Assume ((B, A), M) —7 ((B, A),N).

oo) T (fail, ,00) T
Prove (B, A, Sg1)3!)*, M) Fee38e0) @) (Fail,suce+1)(0,0)
(((B7 A7 SGl);!)*7 (N7 N, w))
3)1. 3m C M.B(m) A N = M[A(m)/m], from Assumption (2) and I SOS.

(succ,succ)(o,oo)+
= =

(3)2. (B, A, Sa1)3h)*, (M, M, 0)) S22
succ
((E;') > ((B7A7SGl);')*7(M7myMaA(m))>7
from (3)1 and PT SOS.
succ N R o (0,00)
(5 (B, A, Sc1)s))*, (M — i, M, A(##))), from PT SOS.
succ fail

(3)4 (175 (B, A, Scu)il)", (M —m, M, A@m))) * 57

(succ)
(e > ((B,A,Sc1)s)),(N,N,0))
from PT SOS and definition of N.

succ o (0,00)
(3)5. (¢ > ((B,A,Sc1)3!)", (N, N,0) =

(((B,A,8¢1)3h)*, (N, N,0)), from PT SOS.
(suc:c,s1.1c<:)(0,oo)+(:fail,succ:+1)(0,oo)+
== = = =

(B7A7SG1);!)*7(N7N30)>3

from (3)2, (3)3, (3)4, (3)5

(3)7. Q.E.D

(22 Assume (B, 4, Scn)il)", (M, M, 0)) (PUeS2ie0@op)” (Fail suce1)(@.c0)™
((B7A7SG1);!)*7(N7N30)>'
Prove ((B, A), M) —r ((B,A),N).

(3)1. 3m C B(m) AN = M[A(m)/m], Assumption (2) and PT SOS.

(3)2. ((B,A),M) — ((B,A),N), from (3)1 and I" SOS.

(3)3. Q.E.D

Unsuccessful primitive function application.
(1)2. Prove ((B,A), M) —p M iff
(B, A, Sa1)sh)*, (M, M, 0))

fail oo
RREEETEL (01, 11,0)
(2)1. Assume ((B, A), M) —1 M.
fail,fail)(0,00) " (fail o)t
Prove (B, A, 8g1)s!)*, M) FHEE2DQop) 7 (Faidsuce+ (000"
(3)1. =3m C M.B(m), Assumption (2) and I" SOS.
. (fail fail)
<3>2' <((B3AaSG1)$!) ,(M,M,@)) —
fail
((esh) > ((B,A,Sc1)3)*, (M, M,0)), from(3)1 and PT SOS.
fail (0,50)
> ((B’A’SGI)S')*’(MaMa0)> -

fail
(' > ((B,A,Sc1)3h)*, (M, M,0)), from PT SOS.

(fail,fail)(0,00)T
= =

(
fail fail,succ+1
(3)4. (1B ((B,A,Sau)))*, (M, M, 0)) F2HHE8eHY
fail
(75 ((B,A,Sc1)3)*, (M, M,0)), from PT SOS.

(3)5. (¢ > ((B,A,S8a1)3)*, (M, M,0)) L
(e, (M, M, D)), from (3)4 and PT SOS.

) fail.fail o
(3)6. (B4, Seu)3t)", (M, 1,0y TH25HES)
§1>cc+1)(°,z°°) (e, (M, M, D)),
from (3)2, (3)3, (3)4 and (3)5

. . o)t
(2)2. Assume (B, A,Sc1)3)*, (M, M,)y T2iEE2iD ()

...the gory details. 139
(fail§1>cc+1)(0zoo)+

(e,(M, M, 0)).
Prove ((B, A), > r (B, 4),M).
(3)1. =3m C M.B(m), Assumptlon (2) and PT SOS.
(3)2. ((B,A), M) —p M, from (3)1 and T SOS.

Inductive case: interleaved compositions of simple programs.

Successful simple interleaving.
(1)3. Prove (P +Q,M) —r (P +Q,N) iff
(suc:c,suc:c)(o,oo)+
(IPIINIQY, (M, M, 0)) == "=

(FalLeect Q@™ (P11l QL (N, N, B)).
(2)1. Assume 1. (P,M) — (P, N) iff

o)t
(1P], (M, M,0)) CHEEOLY)
(:fail,s1.1cc:+1)(0,oo)Jr
= =

([P], (N, N, 0)).
2. (Q,M) — (Q, Ny iff

+
([Q1, (M, 11,0y ** 22O
e e (g1, (v, V0.
3. (P+Q,M) —p (P+Q,N).

oo) T (fail oo) T
Prove ([P]]| [Q1, (M, M, 0)) (** 823" Gt ageerni@ey)
([PTIIIQ], (N, N, 0)).
(3)1. (P,M) —p (P,N) or
(Q, M) —1 (Q, N), Assumption (2):3 and T SOS.
(3)2. WLOG, assume (P, M) —1 (P,N).
o+ (fai + (0. 001+

- (LP], (v b,) (U Q)T ERRLERE DTG 1, (v, v, 0)),

Assumption (2):1 and (3)2.

(succ,succ)(o,oo)+(fail,succ+1)(0,oo)+
AIPTINIQL, (M, M, 0)) = = "= = =
(P11 1Q1. (N, N,0)), from (3)3 and PT SOS.

—~
w
~-
w

—~
w
~
e

(2)2. Assume 1. (P, M) —p (P, N) iff

o) T
([P], (M, M,) (succ:s>ucc)(02)
(fail,succ+1)(o, oo) (succ succ)
:> z

2. (@, M) —r (Q,N) iff

(succ SuCC)(O,oo)+(fail,SuCC+1)(0,oo)+

(IP], (N, N, 0))

(L1, (b1, by FHESH LY ERLIECDOD)” (1.
3. <[[]]IH [[Q]] (M M,Q))) (sucgucc)(o,g) (fa11§1>CC+1)((),:>oo)
LArL Tl avwh.
Prove (P + @, M) —p (P + Q)N
succ succ oo + a1 succ oo +
(3)1. ([P], (M, M, 0)) ')“’:Qf LRV (1p] (N, N, 0)) or
(1Q1, (M, M, 0)) (S““:i““""’%) (failsycet @™ yor (v, N,0)),

Assumption (2):3 and PT SOS.

(3)2. WLOG, assume ([P], (M, M, 0)) S2°22¢®)
(0,00) 1 (fail, succ+1)(0,00) T
> > >

(IP1, (N, N,).

(3)3. (P,M) —1 (P,N), Assumption (2):1 and (3)2
(3)4. (P+Q,M) —p (P+ Q,N), from (3)3 and I" SOS.
(3%5. Q. E. D.

Unsuccessful simple interleaving.
(1)4. Prove (P + Q,M) —p M iff

N
(P11l 1Q], (1, o,)y FRLIAD @)

140 Appendices...
(fail,succ+1)(0,oo)+

> >

(2)1. Assume 1. (P,M) —p M iff
fail,fail)(0,00)T

([PD, (M1, 1, 0)) CH=mTD)
(fail,succ+1)(o, oo)Jr

= :>

(fa11 fall)(o oo)+(fa11 succ+1)(0 oo)+
([Q]],(M, M, 0))
(e, (M, M, 0)).
3. (P+Q,M) —r M.

(e, (M, M, 0))

(e, (M, M, 0)).

fail,fail)(0,00)T
Prove ([P] || [Q], (M, M, p)) F2EHD @)
(FRIIEEVOD) (e (1, 21,0)).
(3)1. (P,M) —1 M. Assumption (2):3 and I" SOS.
fail,fail)(0,00) " (fail o0) T
(3)2. ([P], (M, M, 0)) C =SV Q) BRIV (¢ (a1, 0,0,
Assumption (2):1 and (3)1.
(3)3. (Q,M) —1 M, Assumption (2):3 and I" SOS.
fail,fail)(0,00)T (fail o)t
(3)4. ([Q1, (M, M, @)y TSV Q) BRIV (ar a0,

Assumption (2):2 and (3)3.

(fail,fail)(0,00)T (fail,succ+1)(0,00) T
(3)5. ([PTII[Q], (M, M, 0)) ~ = "= = =
(e, (M, M,0)), from (3)2 and (3)4 and PT SOS.

(3)6. Q. E. D.
(2)2. Assume 1. (P,M) —p M iff
s o + s o +
([[P]] (M MQ))) (fa11:,f>a11)(0,z) (fallil;(%i*l)((),:)
(€, (M .
2. (Q, M> —Lp M iff
gf[Q(]] o, M))(Z)) (falgail)(o,g)-i_(fail%CC+1)((),:>oo)+
€, .
(fail,fail)(0,00)"
3. ([P1III[QD, (M, M, 2)> = =
FARIECCLT (e, (1, M, 0)).

Prove (P + Q, M) —r M.
(fail, fall)(o oo)+(fa11 succ+1)(0 oo)

(3)1. ([P], (M, M, 0)) ~ = = (e, (M, M, D)),
Assumption (2):3 and PT SOS.
(3)2. (P,M) —p M, Assumption (2):1 and (3)1.
(3)3. ([Q], (M, M,) (fall:f>all)(0£>oo)+(failgCC+1)(0,$oo)+
, (e, (M M, 0)), Assumption (2):3 and PT SOS.
(3)4. (Q,M) — M, Assumption (2):2 and (3)3.
(3)5. (P+Q,M) —p M, from (3)2 and (3)4 and I" SOS.
(3)6. Q. E. D.

A.3.2 Non-simple programs

Inductive case: sequential compositions.

Leftmost program in sequential composition keeps going.
(1)5. Prove (Qo P,M) — (Qo P,N) iff

(succ,succ)(o,oo)""

(P1sIQL (M, M,0)) = "=
(fail,succ+1)(0,00)
> >

([P]51Q1, (V, N, 0)).
(2)1. Assume 1. (P,M) — (P,N) iff N
(IP], (M, M, 0)) (S“:%““’“’g)
(Failsyect @™ 1p) (N, N, 0)).
2. (Q o P,M) —r (Qo P,N).

o) T
Prove ([P] 5 [Q], (M, M, 0)) (Succ:,s>u(;c)(oi>)

...the gory details. 141

(failgcwrl)(o,zoo)"' (0)

(P15 1Q1, (N, N, D).
T SOS.

(3)1. (P,M) —1 (P,N), Assumption (2):2 and

o +
(3)2. ([P], (M, M, p)) FU2Z1e) @)
. o +
(Fall,s4ect D@D [p], (N, N,0)),
Assumption (2):1 and (3)1.

+ (fai +
<3>3. ([[P]] ; [Qﬂa (M, M, 0)) (succ:,s>ucc)(0,:>oo) (fallgcc+1)(0£>.o)
(IP]s1Ql, (N, N,0)), from (3)2 and PT SOS.
(3)4. Q. E. D.
(2).2 Assume 1. (P, M) — (P, N) iff

([IP]], (M, M,@)> (succ:,s>ucc)(0,£>.o)+(fail§1>cc+1)
(0,00)"
=" ([P],(N,N,0)). . .
(succ,succ)(0,00)" (fail,succ+1)(0,00)
2. ([P]3QI, (M, M,0)) == = =

(rls e, (N, N,0)).
Prove (Q o P,M) —p (Qo P,N).

L ([P, (M, 0,0y (SeSgree) @) (Fadl sucetn) 0. T
Assumption (2):2 and PT SOS.

)2. (P,M) —r (P, N), Assumption (2):1 and (3)1.

3. (Qo P,M) —1 (Qo P,N), from (3)2 and I" SOS.

)4. Q. E. D.

3

~

((IP1, (N, N, D)),
(

(

(

Switch to rightmost program in sequential composition.

W w w

(1)6. Prove (Q o P,M) —sp (Q, M) iff ([P]3[Q], (M, 0, 0)) F*23°MD (€

(fail,succ+1)(0,00)
= =" ([Q], (M, M,0))
(2)1. Assume 1. (P,M) —p M iff

fail,e)(0,00)T
(P, (M, M, 0)y T2 @)

fail +
(fal %CCJFI)(O’%) (e, (M, M, D)), for some c.

2(Qo P,M) —r (Q, M).

fail,semi)(0,00)T

Prove ([P] 3 [Q], (M, M, 0)) “=5" =)
(:fail,s1.1cc:+1)(0,oo)Jr

= =" ([QI, (M, M,0)).
(3)1. (P,M) —p M, Assumption (2):2 and I" SOS.

i c oo + i oo +
(3)2. ([P], (M, M, py) FESD)" FRILIECG)
(e, (M, M, D)), for some ¢, Assumption (2):1 and (3)1.

(3)3. ([P]3[Q], (M, M. 0)) (faL:L1:,s>emi)(o,:>oo)+(fai1§1>cc+1)(Og)Jr
. 9 ’) ’
(e3[Q], (M, M, D)), from (3)2 and PT SOS.

V. (e3[Q], (M, M, 0)) ‘2 ([Q], (M, M, 0)), from PT SOS.

(
(fail,semi)(o,oo)+(fail,succ+1)(0,oo)+
(3)5. ([P]5[QL (M, M, D))~ = "= = =
([Q1, (M, M, D)), from (3)3, (3)4 and transitivity.
(3)6. Q. E. D.
)2. Assume 1. (P, M) —p M iff
(fail,e)(0,00)"
(IP], (M, M, 0)) " ==
. o +
(fallgcc-ﬂ)(oig (e, (M, M, D)), for some c.
(:fail,semi)(o,oo)Jr(:fail,s1.1c<:+1)(0,oo)Jr
2. ([P]3[Q], (M, M, 0)) ~ = = = =
([Q], (M, M, 0)).
Prove (Q o P, M) —1 (Q, M).

. + . +
(3)1. (IP], (M, 0, 0)) FE°) @) ERLIEE Q)
for some ¢, Assumption (2):2 and PT SOS.
(3)2. (P,M) —p M, Assumption (2):1 and (3)1.
(3)3. (Qo P,M) — (Q, M), from (3)2 and T" SOS.
(3)4. Q. E. D.

(e, (M, M, 0)),

142 Appendices...
Inductive case: interleaved compositions of non-simple programs.

Applicable non-simple interleaving composition.

(1)7. Assume P is not simple.
Prove (P + Q,M) — (P + Q, N) iff

+
(IPY Il 1QD, (M, M, 0)) HeE2)
(FRILISCHV@T ([P ||l [QI, (V, N,).

(2)1. Exactly the same as for simple programs.

(2)2. Q. E.D.
Inapplicable non-simple interleaving composition.

(1)8. Assume P is not simple.
Prove (P + Q,M) — (P' + Q, M) iff
(fail,semi)(o,oo)+(fail,succ+1)(0,oo)+
(1PN [Q1, (M, M, 0)) === "= - -
(IP'TINIQL, (M, M, D)), where P' # P.
(2).1 Assume 1. (P,M) — 1 (P', M) iff ([P], (M, M,0))

(failgemd) @) (fail sucesn) @)™ oy 4y 4y g

2. (P+Q,M) —p (P' +Q, M), where P' # P.

. . o + . o +
Prove ([[P]] H| [[Q]],(M, M, V))) (fail,semi)(0,00)" (fail,succ+1)(0,00)
([P [Q, (M, M, 0)).
(3)1. (P,M) — (P', M), Assumption (2):2 and I" SOS.
. . o + . o +
(3)2. ([P, (b1, b1, py) CHZETD QL) CRLBEVGDT o1y (a1, 11,0,
Assumption (2):1 and (3)1.

(:fail,semi)(o,oo)Jr(:fail,s1.1c<:+1)(0,oo)Jr
(3)3. ([PINIIQI, (M, M, 0)) ~ =" "= = -
(IP'TI1Q1, (M, M, D)), from (3)2 and succ = semi and PT SOS.
(3)4. Q. E. D

(2)2." Assume 1. (P, M) —sp (P', M) iff
([P], (M, M, 0)) (failz,s;emi)(oé.ofr(fa:'L1§1>cc+1)(o,zoo)Jr
([P'], (M, M, 0)). . .
(fail,semi)(0,00)™" (fail,succ+1)(0,00)

110, (M. M,;D))

+ .
. . + . +
(3)1. ([P], (M, M, 0y CH2EDE) RO o1y, (ar, 1,09,
Assumption (2):2 and PT SOS.
(8)2. (P,M) —p (P', M), Assumption (2):1 and (3)1.
(8)3. (P+Q,M) —p (P'+Q,M), from (3)2 and I" SOS.
(3)4. Q. E.D.

This completes the proof. O

Bibliography

[1]

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

J.-M. Andreoli, C. Hankin, and D. Le Métayer, editors. Coordination pro-
grammaing: mechanisms, models and semantics. Imperial College Press, Lon-
don, England, August 1996.

G. Andrews. Concurrent programming: principles and practice. Benjamin
Cummings, Redwood City, Califormia, U.S.A.; 1991.

M. Aono and T. L. Kunii. Botanical tree image generation. IJEEE Computer
Graphics and Applications, 4(5):10-34, May 1984.

K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Springer-Verlag, New York, 1991.

R. J. Back. On the correctness of refinement steps in program develop-
ment. PhD thesis, Department of Computer Science report A-1978-4, Univ.
Helsinki, December 1978.

R. J. R. Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593-624, 1988.

R. J. R. Back. Refinement calculus, part II: parallel and reactive programs.
In Stepwise refinement of distributed systems LNCS 430, pages 67-93, Berlin,
May/Jun 1989. Springer-Verlag.

R. J. R. Back and R. Kurki-Suonio. Decentralisation of process nets with
centralised control. In 2nd SIGACT-SIGOPS Symp. on Principles of Distr.
Computing (PODC), pages 131-142, Montreal, Canada, 1983. Springer Ver-
lag, Berlin.

R. J. R. Back and R. Kurki-Suonio. Distributed co-operation with action sys-
tems. ACM transactions on programming languages and systems, 10(4):513—
554, 1988.

R. J. R. Back and K. Sere. Stepwise refinement of parallel systems. Technical
report A64, Dept. of Comp. Sci, Abo Akademi, Turku, Finland, August 1988.

R. J. R. Back and J. von Wright. Combining angels, demons and miracles
in program specification. Technical report A86, Dept. of Comp. Sci, Abo
Akademi, Turku, Finland, September 1989.

R. J. R. Back and J. von Wright. Refinement calculus, part I: sequential
nondeterministic programs. In Stepwise refinement of distributed systems
LNCS 450, pages 42—66, Berlin, May/Jun 1989. Springer-Verlag.

R. J. R. Back and J. von Wright. Statement inversion and strongest precon-
dition. Science of computer programming, 20(3):223-251, 1993.

J. C. M. Baeten and C. Verhoef. Concrete process algebra. In Handbook of
logic in computer science, Oxford, England, 1992. Clarendon Press.

J. C. M. Baeten and W. P. Weijjland. Process algebra. Cambridge Univ.
Press, Cambridge, England, 1990.

J.-P. Banatre, A. Coutant, and D. Le Métayer. Parallel machines for multi-
set transformation and their programming style. Informationstechnik, Old-
enbourg Verlag, 30(2):99-109, 1988.

143

144

[17]

[18]

[19]
[20]
[21]
[22]

23]

[27]

[28]

[29]
[30]
31)
[32]

[33]

34]

[35]

Bibliography...

J.-P. Banatre and D. Le Métayer. A new computational model and its dis-
cipline of programming. Research report 566, INRIA, 78150 Rocquencourt,
France, 1986.

J.-P. Banatre and D. Le Métayer. The Gamma model and its discipline
of programming. Science of computer programming, 15(1):55-77, November
1990.

J.-P. Banatre and D. Le Métayer. Programming by multiset transformation.
Research report PI 522, IRISA | Rennes, France, March 1990.

J.-P. Banatre and D. Le Métayer. Programming by multiset transformation.
Communications of the ACM, 36(1):98-111, January 1993.

H. P. Barendregt. The lambda calculus, its syntax and semantics. North
Holland, Amsterdam, The Netherlands, 1984.

J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebras.
technical report IW 206, CWI, Amsterdam, The Netherlands, 1992.

J. A. Bergstra and J. W. Klop. The algebra of recursively defined processes
and the algebra of regular processes. In A Ponse, C. Verhoef, and S. F. M.
van Vlijmen, editors, Algebra of Communicating Processes, proceedings of
ACPY4, pages 1-25, Utrecht, The Netherlands, May 1994. Springer Verlag,

Berlin.

J. A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asyn-
chronous communication mechanisms. In S. D. Brookes, A. W. Roscoe,
and G. Winskel, editors, Seminar on concurrency, LNCS 197, pages 76-95.
Springer Verlag, Berlin, 1985.

G. Berry and G. Boudol. The chemical abstract machine. In 17th Principles
of programming languages, pages 81-94, San Fransisco, California, January

1990. ACM, New York.

G. Berry and L. Cosserat. The ESTEREL synchronous programming lan-
guage and its mathematical semantics. In S. D. Brookes, A. W. Roscoe, and
G. Winksel, editors, Seminar on concurrency, LNCS 197, pages 389-448,
Pittsburgh, Pennsylvania, July 1984. Springer-Verlag, Berlin.

G. Boudol. Some chemical abstract machines. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, A decade of concurrency, pages 76-95.
Springer Verlag, Berlin, 1985.

S. Brookes. Full abstraction for a shared variable parallel language. In
Eighth annual IEEE symposium on Logic in Computer Science, pages 98—
109, Montreal, Canada, June 1993. IEEE, Los Alamitos, California.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. of the ACM, 31(3):560-599, 1984.

M. Butler. Stepwise refinement of communicating systems. Technical report
A147, Dept. of Comp. Sci, Abo Akademi, Turku, Finland, February 1994.

N. Carriero and D. Gelernter. How to write parallel programs: A guide to
the perplexed. ACM computing surveys, 21(3):324-357, September 1989.

N. Carriero and D. Gelernter. How to write parallel programs: a first course.
MIT press, Cambridge, Massachusetts, 1990.

N. Carriero and D. Gerlernter. Applications experience with linda. In
ACM/SIGPLAN Parallel Programming: Ezperience with Applications, Lan-
guages and Systems (PPEALS), pages 173-187, New Haven, Connecticut,
July 1988. ACM SIGPLAN press.

P. Le Certen and H. Ruiz Barradas. Programmation d’un noyau unix en
gamma. technical report 1489, INRIA-Rennes, June 1991.

K. M. Chandy and J. Misra. Parallel program design: A foundation. Addison
Wesley, Reading, Massachusetts, 1988.

...reference and deference. 145

[36]

37]

[38]

39]

[40]

[41]

[42]

[43]

[49]
[50]
[51]
[52]

[53]

M. R. V. Chaudron and A. C. N. van Duin. A method for the design of
parallel algorithms. a case study: solving triangular systems. In 30th Hawait
International Conference on System Sciences, pages 320-329, Maui, Hawaii,
January 1997. IEEE, California.

P. Ciancarini, R. Gorrieri, and G. Zavattaro. An alternative semantics for
the parallel operator of the calculus of Gamma programs. In J.-M. Andreoli,
C. Hankin, and D. Le Métayer, editors, Coordination programmaing: mech-
anisms, models and semantics, London, England, August 1996. Imperial
College Press.

T. Cooper and N. Wogrin. Rule-based programming with OPS5. Kaufmann,
San Mateo, 1988.

C. Creveuil. Implementation of Gamma on the connection machine. In
J. B. Banatre and D. Le Métayer, editors, Research directions in high-level
parallel programming languages, pages 219-229, Mont Saint-Michel, France,
June 1991. Springer-Verlag, Berlin.

C. Creveuil and G. Moguerou. Dérivation systématique d’un algorithme de
segmentation d’images - un exemple d’application du formalisme Gamma.
Research report 1049, INRIA Rocquencourt, France, June 1989.

T. A. Critchley and K. C. Batty. Open systems: the reality. Prentice hall,
Hemel Hempstead, England, 1993.

J. Darlington, A. J. Field, P. G. Harrison, D. Harper, G. K. Jouret, P. H. J.
Kelly, K. M. Sephton, and D. W. Sharp. Structured parallel functional
programming. In H. W. Glaser and P. H. Hartel, editors, 3rd Implementation
of functional languages on parallel architectures, pages 31-51, Southampton,
England, June 1991. CSTR 91-07, Dept. of Electr. and Comp. Sci, Univ. of
Southampton, England.

J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. Sharp,
and Q. Wu. Parallel programming using skeleton functions. In A. Bode,
M. Reeve, and G. Wolf, editors, 5th Parallel architectures and languages
Europe (PARLE), LNCS 69/, pages 146-160, Munich, Germany, June 1993.
Springer-Verlag, Berlin.

L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, New
York, 1991.

E. de Jong. Transaction-based programming. PhD thesis, Rijksuniversiteit

Leiden, The Netherlands, 1992.
E. W. Dijkstra. Guarded commands. CACM, 18(8):453—457, August 1975.

G. A. Edgar. Measure, topology and fractal geometry. Springer-Verlag, New
York, 1992.

L. Errington, C. L. Hankin, and T. P. Jensen. Reasoning about gamma
programs. In G. L. Burn, S. Gray, and M. Ryan, editors, Theory and formal
methods, pages 115-125, Isle of Thorns, Chelwood Gate, Sussex, UK, March
1993. Springer-Verlag, Berlin.

A. J. Field and P. G. Harrison. Functional programming. Addison Wesley,
Reading, Massachusetts, 1988.

W. Fontana and L. W. Buss. ‘The arrival of the fittest’: towards a theory of
biological organisation. Bulletin of Mathematical Biology, 56:1-64, 1994.

W. Fontana and L. W. Buss. What would be conserved ‘if the tape were run
twice’. Proc. Nat. Acad. Sci., 91:757-761, 1994.

W. Fontana, G. Wagner, and L. W. Buss. Beyond digital naturalism. Arti-
fictal Life, 1:211-227, 1995.

P. Fradet and D. Le Métayer. Structured Gamma. Technical report PI-989,
IRISA, France, March 1996.

146

[54]

[55]

[56]

[68]
[69]

[70]

[71]

[72]

Bibliography...

V. W. Freeh and G. R. Andrews. fsc: a Sisal compiler for both distributed-
and shard-memory machines. Technical report TR 95-01, Dept. of Comp.
Sci, Univ. of Arizona, Tucson, AZ, February 1995.

U. Frisch, D. d’Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-
P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex
Systems, 1:649-707, 1987.

M. Fukuda, L. F. Bic, M. B. Dillencourt, and F. Merchant. Intra- and inter-
object coordination with MESSENGERS. In P. Ciancarini and C. Hankin,
editors, Proc. Coordination ‘96 LNCS 1061, pages 179-196, Cesena, Italy,
April 1996. Springer, Berlin.

M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Free-
man and company, New York, 1979.

D. Gelernter. Generative communication in Linda. ACM transactions on
programming languages and systems, 7(1):80-112, 1985.

D. Gelernter and A. J. Bernstein. Distributed communication via global
buffer. In 1st SIGACT-SIGOPS Symp. on Principles of Distr. Computing
(PODC), pages 10-18, Ottawa, Canada, 1982. ACM, New York.

J.-Y. Girard. Linear logic. Theoretical computer science, 50(1):1-102, 1987.

K. Gladitz and H. Kuchen. Parallel implementation of the gamma opera-
tion on bags. In 2nd International Symp. on Parallel Symbolic Computation
(PASCO), Lecture Notes Series in Computing vol. 5, pages 154-163. World
Scientific, Singapore, 1994.

K. Gladitz and H. Kuchen. Shared memory implementation of the Gamma-
operation. In J. R. W. Glauert, editor, 6th Implementation of Functional
Languages, pages 26.1-26.13. School of Information Systems, Univ. of East
Anglia, Norwich, UK, September 1994.

D.E. Goldberg. Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley, 1989.

C. L. Hankin. Lambda calculi. Clarendon Press, Oxford, UK, 1994.

C. L. Hankin, D. le Métayer, and D. Sands. A calculus of Gamma programs.
In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Fifth inter-
national workshop on languages and compilers for parallel computing, pages

342-355, New Haven, CT, USA, August 1992. Springer-Verlag, Berlin.

C. L. Hankin, D. le Métayer, and D. Sands. Transformation of Gamma
programs. In M. Billaud, P. Castéran, M-M. Corsini, K. Musumbu, and
A. Rauzy, editors, Static Analysis (WSA 92), pages 12-19, Bordeaux, France,
September 1992. BIGRE, 81-82.

C. L. Hankin, D. le Métayer, and D. Sands. A parallel programming style
and its algebra of programs. In A. Bode, M. Reeve, and G. Wolf, editors,
5th Parallel architectures and languages Europe (PARLE), LNCS 694, pages
367-378, Munich, Germany, June 1993. Springer-Verlag, Berlin.

Dan Heller. XView programming manual. O'Reilly and Associates, Se-
bastopol, California, 1989.

C. A. R. Hoare. Communication sequential processes. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1985.

H. Hoffmann. Implementierung von Gamma auf MIMD-Rechnern mit
verteiltem Speicher. Master’s thesis, Lehrstuhl ff Informatik II, RWTH-
Aachen, Germany, February 1996.

C. J. Hogger. Essentials of logic programmaing. Clarendon, Oxford, England,
1990.

J.H. Holland. Adaptation in Natural and Artificial Systems. Univ. Michigan,
Ann Arbor, 1975.

...reference and deference. 147

[73]
[74]
[75]
[76]

[77]

A. Huth and C. Wissel. The simulation of movement of fish schools. J.
Theoretical Biology, 156(3):365-385, 1992.

K. Culik IT and J. Kari. Mechanisms for pattern formation. Complez Systems,
7:347-365, 1993.

J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503-581, 1994.

H.-M. Jarvinen. The design of a specification language for reactive systems.
PhD thesis, Tampere Univ. Technology, Finland, April 1992.

H.-M. Jarvinen, R. Kurki-Suonio, M. Sakkinen, and K. Systa. Object-
orientation specification of reactive systems. In International conference on
software engineering, pages 63-71, Nice, France, March 1990. IEEE Com-
puter Society Press, Los alamitos, California.

F. P. Brooks Jr. The mythical man-month, 25th Annwversary edition. Addi-
son Wesley, Reading, Massachusetts, 1995.

J. A. Kaandorp. Fractal modelling: growth and form in biology. Springer-
Verlag, Berlin, 1994.

K. Kassner. Sidebranching in noiseless diffusion-limited aggregation. Frac-
tals, 1(2):205-228, 1993.

P. H. J. Kelly. Functional programming for loosely-coupled multiprocessors.
Pitman publishing, London, England, 1989.

B. W. Kernighan and D. W. Ritchie. The C programming language - ANSI
C. Prentice Hall, Englewood Cliffs, New Jersey, second edition edition, 1988.

S. Kirkpatrick, C.D. Gelatt jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, May 1983.

D. E. Knuth. The art of computer programming, volume 2: Seminumerical
algorithms. Addison Wesley, Reading, Massachusetts, second edition, 1980.

R. Kurki-Suonio. Operational specification with joint actions: serializable
databases. Distributed computing, 6:19-37, 1992.

R. Kurki-Suonio. Stepwise design of real-time systems. IEEE transactions
on software engineering, 19(1):56-69, 1993.

R. Kurki-Suonio, K. Systa, and Jiiri Vain. Real-time specification and mod-
elling with joint actions. Science of computer programming, 20:113-140,
1993.

L. Lamport. What good is temporal logic? In Information processing ‘83,
pages 657-668, Paris, France, September 1983. North Holland, Amsterdam.

L. Lamport. How to write a proof. Technical report 94, Digital Equipment
Systems Research center, Palo Alto, California, February 1993.

D. H. Lehmer. Mathematical methods in large-scale computing units. In
Proc. 2nd symp. large-scale digital calculating machinery, pages 141-146,
Cambridge, Massachusetts, 1951. Harvard University press.

A. Lindenmayer. Mathematical models for cellular interactions in develop-
ment. Theoretical Biology, 18:280-299, 1968.

B. Lubachevsky. Efficient parallel simulations of asynchronous cell arrays.
Complex systems, 1:1099-1123, 1987.

B. Lubachevsky. Efficient parallel simulations of dynamic Ising spin systems.
Journal of computational physics, 75:103-122, 1988.

B. B. Mandelbrot and T. Vicsek. Directed recursive models of fractal growth.
J. Physics, 22:377-381, 1989.

H. McEvoy. Gamma, chromatic typing and vegetation. In J.-M. Andreoli
and C. Hankin, editors, Coordination programming: mechanisms, models
and semantics, London, England, August 1996. Imperial College Press.

148

[96]

[97]

[101]
[102]
[103]
[104]
[105]
[106]
[107]

[108]

[109]

[110]
[111]
[112]
[113]

[114]

[115]

Bibliography...

H. McEvoy. Context sensitivity and synchronisation as taxonomics for par-
allel programming. In 30th Hawaii International Conference on System Sci-
ences, pages 369-378, Maui, Hawaii, January 1997. IEEE, California.

H. McEvoy and P. H. Hartel. Local linear logic for locality consciousness
in multiset transformation. In M. Hermenegildo and S. D. Swierstra, ed-
itors, 7th Programming languages: implementations, logics and programs
(PLILP), LNCS 982, pages 357-379, Utrecht, The Netherlands, September
1995. Springer-Verlag, Berlin.

H. McEvoy and J. Kaandorp. On modelling environmentally-sensitive growth
forms and cellular automata using multiset transformation. Fractals, 4(4),

1997.

E. Mendelson. Introduction to Mathematical Logic, 2nd edition. Wadsworth
and Brooks/Cole, Monterey, California, 1987.

D. Le Métayer. Higher-order multiset processing. In G. E. Blelloch, K. M.
Chandy, and S. Jagannathan, editors, Specification of Parallel Languages,
DIMACS 18, pages 179-200. American Mathematical Society, May 1994.

R. Milner. A calculus of communicating systems, LNCS 92. Springer Verlag,
Berlin, 1980.

R. Milner. Communication and concurrency. Prentice Hall, Hemel Hemp-
stead, England, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
1. Technical report ECS-LFCS-89-85, Univ. Edinburgh, 1985.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
2. Technical report ECS-LFCS-89-86, Univ. Edinburgh, 1985.

F. Moller. Axioms for concurrency. Technical report CST-59-89, Univ. Ed-
inburgh, 1989.

C. Morgan. The specification statement. ACM Transactions on programming
languages and systems, 10(3):403—-419, 1988.

J. M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of computer programmang, 9:287-306, 1987.

V. K. Murthy and E. V. Krishnamurthy. Probabilistic parallel program-
ming based on multiset transformation. Future generation computer systems

(FGCS), 11(3):283-293, June 1995.

R. De Nicola and M. Hennessy. CCS without 7’s. In H. Ehrig, R. Kowalski,
G. Levi, and U. Montanari, editors, Theory and practise of software devel-
opment 87 (TAPSOFT), pages 138-152, Pisa, Italy, March 1987. Springer-
Verlag, Berlin.

H. R. Nielson and F. Nielson. Semantics with applications: A formal intro-
duction. John Wiley & Sons, Chichester, England, 1991.

L. Niemeyer, L. Pietronero, and H. J. Weismann. Fractal dimension of di-
electric breakdown. Physical review letters, 52(12):1033-1036, March 1984.

L. C. Paulson. ML for the working programmer. Cambridge university press,

Cambridge, England, 1991.

S. L. Peyton Jones. Parallel implementations of functional programming
languages. The Computer Journal, 32(2):175-186, 1989.

G. D. Plotkin. A structural approach to operational semantics. Technical re-
port DAIMI FN-19, Dept. of Comp. Sci, Aarhus Univ., Denmark, September
1981.

P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Méch. Visual models of plant
development. In Handbook of formal languages, Berlin, 1996 (to appear).
Springer-Verlag.

...reference and deference. 149

[116]

[117]
[118]
[119]

[120]
[121]

[128]

[129]
[130]

[131]

[132]

[133]

[134]
[135]
[136]

[137]

P. Prusinkiewicz, J. Hanan, and A. Lindenmayer. Lindenmayer systems,
fractals and plants. Lecture notes in biomathematics 79. Springer-Verlag,
New York, 1989.

P. Prusinkiewicz, M. James, and R. Méch. Synthetic topiary. Computer
Graphics, pages 351-358, 1994. SIGGRAPH ‘94 Proceedings.

P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
Springer, New York, 1990.

A. Wikstrom. Functional programming using Standard ML. Prentice Hall,
Hemel Hempstead, England, 1987.

S.M. Ross. A course in simulation. Macmillan, 1991.

A. I T. Rowstron and A. M. Wood. BONITA: a set of tuple space primi-
tives for distributed coordination. In $0th Hawair International Conference
on System Sciences, pages 379-398, Maui, Hawaii, January 1997. IEEE, Cal-
ifornia.

G. Rozenberg and A. Salomaa. The mathematical theory of L-systems. Aca-
demic press, New York, 1980.

G. Rozenberg and A. Salomaa. The book of L. Springer, Berlin, 1986.
A. Salomaa. Formal languages. Academic press, New York, 1973.
A. Salomaa. Jewels of formal language theory. Pitman, London, 1981.

D. Sands. A compositional semantics of combining forms for Gamma pro-
grams. In D. Bjgrner, M. Broy, and I. V. Pottosin, editors, Formal methods
i programmang and their applications, LNCS 735, pages 43-56, Academ-
gorodok,Novosibirsk,Russia, Jun/Jul 1993. Springer Verlag, Berlin.

D. Sands. Composed reduction systems. In J.-M. Andreoli, C. Hankin, and
D. Le Métayer, editors, Coordination programming: mechanisms, models and
semantics, London, England, August 1996. Imperial College Press.

V.A. Saraswat and M. Rinard. Concurrent constraint programming. In
Proc. of the Seventeenth ACM Symposium on Principles of Programming
Languages, pages 232-245. ACM, New York, 1990.

H. G. Schlegel. Allgemeine Mikrobiologie. Georg Thieme Verlag, Stuttgart,
Germany, 1976.

B. Schoiifisch and K. Hadeler. Dimer automata and cellular automata. Phys-
ica D, 94:188-204, 1996.

K. Sere. Communication in processor farms: a case study in reactive sys-
tems refinement. Technical report A122, Dept. of Comp. Sci, Abo Akademi,
Turku, Finland, January 1991.

J. Siegel. CORBA fundamentals and programming. John Wiley and Sons,
Inc, New York, U.S.A.; 1996.

P. M. A. Sloot, J. M. Voogt, D. de Kanter, and L. O. Hertzberger. Simulated
annealing: comparison of vector and parallel implementations. Technical
report CS-93-06, Univ. of Amsterdam, The Netherlands, October 1993.

S. Thompson. Miranda: the craft of functional programming. Addison Wes-
ley, Harlow, England, 1995.

S. Thompson. Haskell: the craft of functional programming. Addison Wesley,
Harlow, England, 1996.

T. Toffoli and N. Margolus. Cellular automata machines. MIT press, Cam-
bridge, Massachusetts, 1991.

R. Tolksdorf. Coordinative applications, structured coordination and meta
coordination. In 30th Hawaii International Conference on System Sciences,
pages 391-392, Maui, Hawaii, January 1997. IEEE, California.

150

[138]

[139]
[140]
[141]

[142]

[143]
[144]

[145]

Bibliography...

S. Ulam. On the Monte Carlo method. In Proc. 2nd symp. on large-scale
digital calculating machinery, pages 207-212, Cambridge, Mass., September
1951. Harvard University press.

M. Vieillot. Premiers pas de Gamma avec une PAM. Rapport de stage,
IFSIC, IRISA Univ. de Rennes, France, 1992.

R. F. Voss. Birth, death, step size and the shape of DLA. Fractals, 1(2):141—
147, 1993.

L. Wall. Programming Perl, second edition. O’Reilly and Associates, Se-
bastopol, California, 1996.

R. A. Whiteside and J. S. Leichter. Using Linda for supercomputing on a
local area network. In Supercomputing ‘88, pages 192-199, Orlando, Florida,
November 1988. IEEE and ACM SIGARCH.

T. A. Witten and L. M. Sander. Diffusion-limited aggregation. Physical
review B, 27(9):5686-5697, 1984.

L. Wittgenstein. Philosophical Investigations. Basil Blackwell, Oxford, Eng-
land, 1958.

S. Wolfram. Cellular automata and complezity. Addison Wesley, Reading,
Massachusetts, 1994.

